Spaces:
Runtime error
Runtime error
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
// implementation taken from Caffe2 | |
template <typename T> | |
struct PreCalc { | |
int pos1; | |
int pos2; | |
int pos3; | |
int pos4; | |
T w1; | |
T w2; | |
T w3; | |
T w4; | |
}; | |
template <typename T> | |
void pre_calc_for_bilinear_interpolate( | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int iy_upper, | |
const int ix_upper, | |
T roi_start_h, | |
T roi_start_w, | |
T bin_size_h, | |
T bin_size_w, | |
int roi_bin_grid_h, | |
int roi_bin_grid_w, | |
std::vector<PreCalc<T>>& pre_calc) { | |
int pre_calc_index = 0; | |
for (int ph = 0; ph < pooled_height; ph++) { | |
for (int pw = 0; pw < pooled_width; pw++) { | |
for (int iy = 0; iy < iy_upper; iy++) { | |
const T yy = roi_start_h + ph * bin_size_h + | |
static_cast<T>(iy + .5f) * bin_size_h / | |
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < ix_upper; ix++) { | |
const T xx = roi_start_w + pw * bin_size_w + | |
static_cast<T>(ix + .5f) * bin_size_w / | |
static_cast<T>(roi_bin_grid_w); | |
T x = xx; | |
T y = yy; | |
// deal with: inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
// empty | |
PreCalc<T> pc; | |
pc.pos1 = 0; | |
pc.pos2 = 0; | |
pc.pos3 = 0; | |
pc.pos4 = 0; | |
pc.w1 = 0; | |
pc.w2 = 0; | |
pc.w3 = 0; | |
pc.w4 = 0; | |
pre_calc[pre_calc_index] = pc; | |
pre_calc_index += 1; | |
continue; | |
} | |
if (y <= 0) { | |
y = 0; | |
} | |
if (x <= 0) { | |
x = 0; | |
} | |
int y_low = (int)y; | |
int x_low = (int)x; | |
int y_high; | |
int x_high; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T)y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T)x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
// save weights and indeces | |
PreCalc<T> pc; | |
pc.pos1 = y_low * width + x_low; | |
pc.pos2 = y_low * width + x_high; | |
pc.pos3 = y_high * width + x_low; | |
pc.pos4 = y_high * width + x_high; | |
pc.w1 = w1; | |
pc.w2 = w2; | |
pc.w3 = w3; | |
pc.w4 = w4; | |
pre_calc[pre_calc_index] = pc; | |
pre_calc_index += 1; | |
} | |
} | |
} | |
} | |
} | |
template <typename T> | |
void ROIAlignForward_cpu_kernel( | |
const int nthreads, | |
const T* bottom_data, | |
const T& spatial_scale, | |
const int channels, | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio, | |
const T* bottom_rois, | |
//int roi_cols, | |
T* top_data) { | |
//AT_ASSERT(roi_cols == 4 || roi_cols == 5); | |
int roi_cols = 5; | |
int n_rois = nthreads / channels / pooled_width / pooled_height; | |
// (n, c, ph, pw) is an element in the pooled output | |
// can be parallelized using omp | |
// #pragma omp parallel for num_threads(32) | |
for (int n = 0; n < n_rois; n++) { | |
int index_n = n * channels * pooled_width * pooled_height; | |
// roi could have 4 or 5 columns | |
const T* offset_bottom_rois = bottom_rois + n * roi_cols; | |
int roi_batch_ind = 0; | |
if (roi_cols == 5) { | |
roi_batch_ind = offset_bottom_rois[0]; | |
offset_bottom_rois++; | |
} | |
// Do not using rounding; this implementation detail is critical | |
T roi_start_w = offset_bottom_rois[0] * spatial_scale; | |
T roi_start_h = offset_bottom_rois[1] * spatial_scale; | |
T roi_end_w = offset_bottom_rois[2] * spatial_scale; | |
T roi_end_h = offset_bottom_rois[3] * spatial_scale; | |
// T roi_start_w = round(offset_bottom_rois[0] * spatial_scale); | |
// T roi_start_h = round(offset_bottom_rois[1] * spatial_scale); | |
// T roi_end_w = round(offset_bottom_rois[2] * spatial_scale); | |
// T roi_end_h = round(offset_bottom_rois[3] * spatial_scale); | |
// Force malformed ROIs to be 1x1 | |
T roi_width = std::max(roi_end_w - roi_start_w, (T)1.); | |
T roi_height = std::max(roi_end_h - roi_start_h, (T)1.); | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) | |
? sampling_ratio | |
: ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = | |
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// We do average (integral) pooling inside a bin | |
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 | |
// we want to precalculate indeces and weights shared by all chanels, | |
// this is the key point of optimiation | |
std::vector<PreCalc<T>> pre_calc( | |
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height); | |
pre_calc_for_bilinear_interpolate( | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
roi_bin_grid_h, | |
roi_bin_grid_w, | |
roi_start_h, | |
roi_start_w, | |
bin_size_h, | |
bin_size_w, | |
roi_bin_grid_h, | |
roi_bin_grid_w, | |
pre_calc); | |
for (int c = 0; c < channels; c++) { | |
int index_n_c = index_n + c * pooled_width * pooled_height; | |
const T* offset_bottom_data = | |
bottom_data + (roi_batch_ind * channels + c) * height * width; | |
int pre_calc_index = 0; | |
for (int ph = 0; ph < pooled_height; ph++) { | |
for (int pw = 0; pw < pooled_width; pw++) { | |
int index = index_n_c + ph * pooled_width + pw; | |
T output_val = 0.; | |
for (int iy = 0; iy < roi_bin_grid_h; iy++) { | |
for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
PreCalc<T> pc = pre_calc[pre_calc_index]; | |
output_val += pc.w1 * offset_bottom_data[pc.pos1] + | |
pc.w2 * offset_bottom_data[pc.pos2] + | |
pc.w3 * offset_bottom_data[pc.pos3] + | |
pc.w4 * offset_bottom_data[pc.pos4]; | |
pre_calc_index += 1; | |
} | |
} | |
output_val /= count; | |
top_data[index] = output_val; | |
} // for pw | |
} // for ph | |
} // for c | |
} // for n | |
} | |
at::Tensor ROIAlign_forward_cpu(const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio) { | |
AT_ASSERTM(!input.device().is_cuda(), "input must be a CPU tensor"); | |
AT_ASSERTM(!rois.device().is_cuda(), "rois must be a CPU tensor"); | |
auto num_rois = rois.size(0); | |
auto channels = input.size(1); | |
auto height = input.size(2); | |
auto width = input.size(3); | |
auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options()); | |
auto output_size = num_rois * pooled_height * pooled_width * channels; | |
if (output.numel() == 0) { | |
return output; | |
} | |
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIAlign_forward", [&] { | |
ROIAlignForward_cpu_kernel<scalar_t>( | |
output_size, | |
input.data_ptr<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
rois.data_ptr<scalar_t>(), | |
output.data_ptr<scalar_t>()); | |
}); | |
return output; | |
} | |