Pinwheel's picture
HF Demo
128757a
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
class FPN(nn.Module):
"""
Module that adds FPN on top of a list of feature maps.
The feature maps are currently supposed to be in increasing depth
order, and must be consecutive
"""
def __init__(
self, in_channels_list, out_channels, conv_block, top_blocks=None, drop_block=None, use_spp=False, use_pan=False,
return_swint_feature_before_fusion=False
):
"""
Arguments:
in_channels_list (list[int]): number of channels for each feature map that
will be fed
out_channels (int): number of channels of the FPN representation
top_blocks (nn.Module or None): if provided, an extra operation will
be performed on the output of the last (smallest resolution)
FPN output, and the result will extend the result list
"""
super(FPN, self).__init__()
self.inner_blocks = []
self.layer_blocks = []
self.pan_blocks = [] if use_pan else None
self.spp_block = SPPLayer() if use_spp else None
self.return_swint_feature_before_fusion = return_swint_feature_before_fusion
for idx, in_channels in enumerate(in_channels_list, 1):
inner_block = "fpn_inner{}".format(idx)
layer_block = "fpn_layer{}".format(idx)
if in_channels == 0:
continue
if idx==len(in_channels_list) and use_spp:
in_channels = in_channels*4
inner_block_module = conv_block(in_channels, out_channels, 1)
layer_block_module = conv_block(out_channels, out_channels, 3, 1)
self.add_module(inner_block, inner_block_module)
self.add_module(layer_block, layer_block_module)
self.inner_blocks.append(inner_block)
self.layer_blocks.append(layer_block)
if use_pan:
pan_in_block = "pan_in_layer{}".format(idx)
pan_in_block_module = conv_block(out_channels, out_channels, 3, 2)
self.add_module(pan_in_block, pan_in_block_module)
pan_out_block = "pan_out_layer{}".format(idx)
pan_out_block_module = conv_block(out_channels, out_channels, 3, 1)
self.add_module(pan_out_block, pan_out_block_module)
self.pan_blocks.append([pan_in_block, pan_out_block])
self.top_blocks = top_blocks
self.drop_block = drop_block
def forward(self, x):
"""
Arguments:
x (list[Tensor]): feature maps for each feature level.
Returns:
results (tuple[Tensor]): feature maps after FPN layers.
They are ordered from highest resolution first.
"""
if type(x) is tuple:
# for the case of VL backbone
x, x_text = x[0], x[1]
# print([v.shape for v in x])
swint_feature_c4 = None
if self.return_swint_feature_before_fusion:
# TODO: here we only return last single scale feature map before the backbone fusion, should be more flexible
swint_feature_c4 = x[-2]
if self.spp_block:
last_inner = getattr(self, self.inner_blocks[-1])(self.spp_block(x[-1]))
else:
last_inner = getattr(self, self.inner_blocks[-1])(x[-1])
results = []
results.append(getattr(self, self.layer_blocks[-1])(last_inner))
for feature, inner_block, layer_block in zip(
x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]
):
if not inner_block:
continue
inner_lateral = getattr(self, inner_block)(feature)
if inner_lateral.shape[-2:] != last_inner.shape[-2:]:
# TODO: could also give size instead of
inner_top_down = F.interpolate(last_inner, size=inner_lateral.shape[-2:], mode="nearest")
else:
inner_top_down = last_inner
# TODO use size instead of scale to make it robust to different sizes
# inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:],
# mode='bilinear', align_corners=False)
last_inner = inner_lateral + inner_top_down
if self.drop_block and self.training:
results.insert(0, getattr(self, layer_block)(self.drop_block(last_inner)))
else:
results.insert(0, getattr(self, layer_block)(last_inner))
if self.pan_blocks:
pan_results = []
last_outer = results[0]
pan_results.append(last_outer)
for outer_top_down, pan_block in zip(results[1:], self.pan_blocks):
if self.drop_block and self.training:
pan_lateral = getattr(self, pan_block[0])(self.drop_block(last_outer))
else:
pan_lateral = getattr(self, pan_block[0])(last_outer)
last_outer = getattr(self, pan_block[1])(pan_lateral + outer_top_down)
pan_results.append(last_outer)
results = pan_results
if isinstance(self.top_blocks, LastLevelP6P7):
last_results = self.top_blocks(x[-1], results[-1])
results.extend(last_results)
elif isinstance(self.top_blocks, LastLevelMaxPool):
last_results = self.top_blocks(results[-1])
results.extend(last_results)
try:
return tuple(results), x_text, swint_feature_c4
except NameError as e:
return tuple(results)
class LastLevelMaxPool(nn.Module):
def forward(self, x):
return [F.max_pool2d(x, 1, 2, 0)]
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7.
"""
def __init__(self, in_channels, out_channels):
super(LastLevelP6P7, self).__init__()
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
nn.init.kaiming_uniform_(module.weight, a=1)
nn.init.constant_(module.bias, 0)
self.use_P5 = in_channels == out_channels
def forward(self, c5, p5):
x = p5 if self.use_P5 else c5
p6 = self.p6(x)
p7 = self.p7(F.relu(p6))
return [p6, p7]
class SPPLayer(nn.Module):
def __init__(self):
super(SPPLayer, self).__init__()
def forward(self, x):
x_1 = x
x_2 = F.max_pool2d(x, 5, stride=1, padding=2)
x_3 = F.max_pool2d(x, 9, stride=1, padding=4)
x_4 = F.max_pool2d(x, 13, stride=1, padding=6)
out = torch.cat((x_1, x_2, x_3, x_4),dim=1)
return out