Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from maskrcnn_benchmark.structures.bounding_box import BoxList | |
from maskrcnn_benchmark.structures.image_list import ImageList | |
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist | |
class BufferList(nn.Module): | |
""" | |
Similar to nn.ParameterList, but for buffers | |
""" | |
def __init__(self, buffers=None): | |
super(BufferList, self).__init__() | |
if buffers is not None: | |
self.extend(buffers) | |
def extend(self, buffers): | |
offset = len(self) | |
for i, buffer in enumerate(buffers): | |
self.register_buffer(str(offset + i), buffer) | |
return self | |
def __len__(self): | |
return len(self._buffers) | |
def __iter__(self): | |
return iter(self._buffers.values()) | |
class AnchorGenerator(nn.Module): | |
""" | |
For a set of image sizes and feature maps, computes a set | |
of anchors | |
""" | |
def __init__( | |
self, | |
sizes=(128, 256, 512), | |
aspect_ratios=(0.5, 1.0, 2.0), | |
anchor_strides=(8, 16, 32), | |
straddle_thresh=0, | |
): | |
super(AnchorGenerator, self).__init__() | |
if len(anchor_strides) == 1: | |
anchor_stride = anchor_strides[0] | |
cell_anchors = [ | |
generate_anchors(anchor_stride, sizes, aspect_ratios).float() | |
] | |
else: | |
if len(anchor_strides) != len(sizes): | |
raise RuntimeError("FPN should have #anchor_strides == #sizes") | |
cell_anchors = [ | |
generate_anchors( | |
anchor_stride, | |
size if isinstance(size, (tuple, list)) else (size,), | |
aspect_ratios | |
).float() | |
for anchor_stride, size in zip(anchor_strides, sizes) | |
] | |
self.strides = anchor_strides | |
self.cell_anchors = BufferList(cell_anchors) | |
self.straddle_thresh = straddle_thresh | |
def num_anchors_per_location(self): | |
return [len(cell_anchors) for cell_anchors in self.cell_anchors] | |
def grid_anchors(self, grid_sizes): | |
anchors = [] | |
for size, stride, base_anchors in zip( | |
grid_sizes, self.strides, self.cell_anchors | |
): | |
grid_height, grid_width = size | |
device = base_anchors.device | |
shifts_x = torch.arange( | |
0, grid_width * stride, step=stride, dtype=torch.float32, device=device | |
) | |
shifts_y = torch.arange( | |
0, grid_height * stride, step=stride, dtype=torch.float32, device=device | |
) | |
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) | |
shift_x = shift_x.reshape(-1) | |
shift_y = shift_y.reshape(-1) | |
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) | |
anchors.append( | |
(shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4) | |
) | |
return anchors | |
def add_visibility_to(self, boxlist): | |
image_width, image_height = boxlist.size | |
anchors = boxlist.bbox | |
if self.straddle_thresh >= 0: | |
inds_inside = ( | |
(anchors[..., 0] >= -self.straddle_thresh) | |
& (anchors[..., 1] >= -self.straddle_thresh) | |
& (anchors[..., 2] < image_width + self.straddle_thresh) | |
& (anchors[..., 3] < image_height + self.straddle_thresh) | |
) | |
else: | |
device = anchors.device | |
inds_inside = torch.ones(anchors.shape[0], dtype=torch.bool, device=device) | |
boxlist.add_field("visibility", inds_inside) | |
def forward(self, image_list, feature_maps): | |
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] | |
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) | |
anchors = [] | |
if isinstance(image_list, ImageList): | |
for i, (image_height, image_width) in enumerate(image_list.image_sizes): | |
anchors_in_image = [] | |
for anchors_per_feature_map in anchors_over_all_feature_maps: | |
boxlist = BoxList( | |
anchors_per_feature_map, (image_width, image_height), mode="xyxy" | |
) | |
self.add_visibility_to(boxlist) | |
anchors_in_image.append(boxlist) | |
anchors.append(anchors_in_image) | |
else: | |
image_height, image_width = [int(x) for x in image_list.size()[-2:]] | |
anchors_in_image = [] | |
for anchors_per_feature_map in anchors_over_all_feature_maps: | |
boxlist = BoxList( | |
anchors_per_feature_map, (image_width, image_height), mode="xyxy" | |
) | |
self.add_visibility_to(boxlist) | |
anchors_in_image.append(boxlist) | |
anchors.append(anchors_in_image) | |
return anchors | |
def make_anchor_generator(config): | |
anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES | |
aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS | |
anchor_stride = config.MODEL.RPN.ANCHOR_STRIDE | |
straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH | |
if config.MODEL.RPN.USE_FPN: | |
assert len(anchor_stride) == len( | |
anchor_sizes | |
), "FPN should have len(ANCHOR_STRIDE) == len(ANCHOR_SIZES)" | |
else: | |
assert len(anchor_stride) == 1, "Non-FPN should have a single ANCHOR_STRIDE" | |
anchor_generator = AnchorGenerator( | |
anchor_sizes, aspect_ratios, anchor_stride, straddle_thresh | |
) | |
return anchor_generator | |
def make_anchor_generator_complex(config): | |
anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES | |
aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS | |
anchor_strides = config.MODEL.RPN.ANCHOR_STRIDE | |
straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH | |
octave = config.MODEL.RPN.OCTAVE | |
scales_per_octave = config.MODEL.RPN.SCALES_PER_OCTAVE | |
if config.MODEL.RPN.USE_FPN: | |
assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now" | |
new_anchor_sizes = [] | |
for size in anchor_sizes: | |
per_layer_anchor_sizes = [] | |
for scale_per_octave in range(scales_per_octave): | |
octave_scale = octave ** (scale_per_octave / float(scales_per_octave)) | |
per_layer_anchor_sizes.append(octave_scale * size) | |
new_anchor_sizes.append(tuple(per_layer_anchor_sizes)) | |
else: | |
assert len(anchor_strides) == 1, "Non-FPN should have a single ANCHOR_STRIDE" | |
new_anchor_sizes = anchor_sizes | |
anchor_generator = AnchorGenerator( | |
tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh | |
) | |
return anchor_generator | |
class CenterAnchorGenerator(nn.Module): | |
""" | |
For a set of image sizes and feature maps, computes a set | |
of anchors | |
""" | |
def __init__( | |
self, | |
sizes=(128, 256, 512), | |
aspect_ratios=(0.5, 1.0, 2.0), | |
anchor_strides=(8, 16, 32), | |
straddle_thresh=0, | |
anchor_shift=(0.0, 0.0, 0.0, 0.0), | |
use_relative=False | |
): | |
super(CenterAnchorGenerator, self).__init__() | |
self.sizes = sizes | |
self.aspect_ratios = aspect_ratios | |
self.strides = anchor_strides | |
self.straddle_thresh = straddle_thresh | |
self.anchor_shift = anchor_shift | |
self.use_relative = use_relative | |
def add_visibility_to(self, boxlist): | |
image_width, image_height = boxlist.size | |
anchors = boxlist.bbox | |
if self.straddle_thresh >= 0: | |
inds_inside = ( | |
(anchors[..., 0] >= -self.straddle_thresh) | |
& (anchors[..., 1] >= -self.straddle_thresh) | |
& (anchors[..., 2] < image_width + self.straddle_thresh) | |
& (anchors[..., 3] < image_height + self.straddle_thresh) | |
) | |
else: | |
device = anchors.device | |
inds_inside = torch.ones(anchors.shape[0], dtype=torch.uint8, device=device) | |
boxlist.add_field("visibility", inds_inside) | |
def forward(self, centers, image_sizes, feature_maps): | |
shift_left, shift_top, shift_right, shift_down = self.anchor_shift | |
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] | |
anchors = [] | |
for i, ((image_height, image_width), center_bbox) in enumerate(zip(image_sizes, centers)): | |
center = center_bbox.get_field("centers") | |
boxlist_per_level = [] | |
for size, fsize in zip(self.sizes, grid_sizes): | |
for ratios in self.aspect_ratios: | |
size_ratios = size*size / ratios | |
ws = np.round(np.sqrt(size_ratios)) | |
hs = np.round(ws * ratios) | |
anchors_per_level = torch.cat( | |
( | |
center[:,0,None] - 0.5 * (1 + shift_left) * (ws - 1), | |
center[:,1,None] - 0.5 * (1 + shift_top) * (hs - 1), | |
center[:,0,None] + 0.5 * (1 + shift_right) * (ws - 1), | |
center[:,1,None] + 0.5 * (1 + shift_down) * (hs - 1), | |
), | |
dim=1 | |
) | |
boxlist = BoxList(anchors_per_level, (image_width, image_height), mode="xyxy") | |
boxlist.add_field('cbox', center_bbox) | |
self.add_visibility_to(boxlist) | |
boxlist_per_level.append(boxlist) | |
if self.use_relative: | |
area = center_bbox.area() | |
for ratios in self.aspect_ratios: | |
size_ratios = area / ratios | |
ws = torch.round(torch.sqrt(size_ratios)) | |
hs = torch.round(ws * ratios) | |
anchors_per_level = torch.stack( | |
( | |
center[:,0] - (1 + shift_left) * ws, | |
center[:,1] - (1 + shift_top) * hs, | |
center[:,0] + (1 + shift_right) * ws, | |
center[:,1] + (1 + shift_down) * hs, | |
), | |
dim=1 | |
) | |
boxlist = BoxList(anchors_per_level, (image_width, image_height), mode="xyxy") | |
boxlist.add_field('cbox', center_bbox) | |
self.add_visibility_to(boxlist) | |
boxlist_per_level.append(boxlist) | |
anchors_in_image = cat_boxlist(boxlist_per_level) | |
anchors.append(anchors_in_image) | |
return anchors | |
def make_center_anchor_generator(config): | |
anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES | |
aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS | |
anchor_strides = config.MODEL.RPN.ANCHOR_STRIDE | |
straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH | |
octave = config.MODEL.RPN.OCTAVE | |
scales_per_octave = config.MODEL.RPN.SCALES_PER_OCTAVE | |
anchor_shift = config.MODEL.RPN.ANCHOR_SHIFT | |
use_relative = config.MODEL.RPN.USE_RELATIVE_SIZE | |
if config.MODEL.RPN.USE_FPN: | |
assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now" | |
new_anchor_sizes = [] | |
for size in anchor_sizes: | |
per_layer_anchor_sizes = [] | |
for scale_per_octave in range(scales_per_octave): | |
octave_scale = octave ** (scale_per_octave / float(scales_per_octave)) | |
per_layer_anchor_sizes.append(octave_scale * size) | |
new_anchor_sizes.append(tuple(per_layer_anchor_sizes)) | |
else: | |
assert len(anchor_strides) == 1, "Non-FPN should have a single ANCHOR_STRIDE" | |
new_anchor_sizes = anchor_sizes | |
anchor_generator = CenterAnchorGenerator( | |
tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh, anchor_shift, use_relative | |
) | |
return anchor_generator | |
# Copyright (c) 2017-present, Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
############################################################################## | |
# | |
# Based on: | |
# -------------------------------------------------------- | |
# Faster R-CNN | |
# Copyright (c) 2015 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Ross Girshick and Sean Bell | |
# -------------------------------------------------------- | |
# Verify that we compute the same anchors as Shaoqing's matlab implementation: | |
# | |
# >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat | |
# >> anchors | |
# | |
# anchors = | |
# | |
# -83 -39 100 56 | |
# -175 -87 192 104 | |
# -359 -183 376 200 | |
# -55 -55 72 72 | |
# -119 -119 136 136 | |
# -247 -247 264 264 | |
# -35 -79 52 96 | |
# -79 -167 96 184 | |
# -167 -343 184 360 | |
# array([[ -83., -39., 100., 56.], | |
# [-175., -87., 192., 104.], | |
# [-359., -183., 376., 200.], | |
# [ -55., -55., 72., 72.], | |
# [-119., -119., 136., 136.], | |
# [-247., -247., 264., 264.], | |
# [ -35., -79., 52., 96.], | |
# [ -79., -167., 96., 184.], | |
# [-167., -343., 184., 360.]]) | |
def generate_anchors( | |
stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2) | |
): | |
"""Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors | |
are centered on stride / 2, have (approximate) sqrt areas of the specified | |
sizes, and aspect ratios as given. | |
""" | |
return _generate_anchors( | |
stride, | |
np.array(sizes, dtype=np.float) / stride, | |
np.array(aspect_ratios, dtype=np.float), | |
) | |
def _generate_anchors(base_size, scales, aspect_ratios): | |
"""Generate anchor (reference) windows by enumerating aspect ratios X | |
scales wrt a reference (0, 0, base_size - 1, base_size - 1) window. | |
""" | |
anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1 | |
anchors = _ratio_enum(anchor, aspect_ratios) | |
anchors = np.vstack( | |
[_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])] | |
) | |
return torch.from_numpy(anchors) | |
def _whctrs(anchor): | |
"""Return width, height, x center, and y center for an anchor (window).""" | |
w = anchor[2] - anchor[0] + 1 | |
h = anchor[3] - anchor[1] + 1 | |
x_ctr = anchor[0] + 0.5 * (w - 1) | |
y_ctr = anchor[1] + 0.5 * (h - 1) | |
return w, h, x_ctr, y_ctr | |
def _mkanchors(ws, hs, x_ctr, y_ctr): | |
"""Given a vector of widths (ws) and heights (hs) around a center | |
(x_ctr, y_ctr), output a set of anchors (windows). | |
""" | |
ws = ws[:, np.newaxis] | |
hs = hs[:, np.newaxis] | |
anchors = np.hstack( | |
( | |
x_ctr - 0.5 * (ws - 1), | |
y_ctr - 0.5 * (hs - 1), | |
x_ctr + 0.5 * (ws - 1), | |
y_ctr + 0.5 * (hs - 1), | |
) | |
) | |
return anchors | |
def _ratio_enum(anchor, ratios): | |
"""Enumerate a set of anchors for each aspect ratio wrt an anchor.""" | |
w, h, x_ctr, y_ctr = _whctrs(anchor) | |
size = w * h | |
size_ratios = size / ratios | |
ws = np.round(np.sqrt(size_ratios)) | |
hs = np.round(ws * ratios) | |
anchors = _mkanchors(ws, hs, x_ctr, y_ctr) | |
return anchors | |
def _scale_enum(anchor, scales): | |
"""Enumerate a set of anchors for each scale wrt an anchor.""" | |
w, h, x_ctr, y_ctr = _whctrs(anchor) | |
ws = w * scales | |
hs = h * scales | |
anchors = _mkanchors(ws, hs, x_ctr, y_ctr) | |
return anchors | |