Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from collections import defaultdict | |
from .inference import make_atss_postprocessor | |
from .loss import make_atss_loss_evaluator | |
from .anchor_generator import make_anchor_generator_complex | |
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist | |
from maskrcnn_benchmark.layers import Scale, DYReLU, SELayer, ModulatedDeformConv | |
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d | |
from maskrcnn_benchmark.modeling.backbone.fbnet import * | |
from maskrcnn_benchmark.engine.inference import create_positive_map_label_to_token_from_positive_map | |
from ..utils import cat, concat_box_prediction_layers, permute_and_flatten | |
from maskrcnn_benchmark.utils.fuse_helper import FeatureResizer, func_attention, _make_mlp, _make_conv, _make_coord, \ | |
BiAttentionBlock, AttentionT2I, BiAttentionBlockForCheckpoint, BertLMPredictionHead | |
from transformers.models.bert.modeling_bert import BertConfig, BertAttention, BertIntermediate, BertOutput, \ | |
BertPreTrainedModel | |
from transformers.modeling_utils import apply_chunking_to_forward | |
import torch.utils.checkpoint as checkpoint | |
import pdb | |
from maskrcnn_benchmark.modeling.language_backbone.clip_model import QuickGELU, LayerNorm, DropPath | |
from timm.models.layers import DropPath, trunc_normal_ | |
class h_sigmoid(nn.Module): | |
def __init__(self, inplace=True, h_max=1): | |
super(h_sigmoid, self).__init__() | |
self.relu = nn.ReLU6(inplace=inplace) | |
self.h_max = h_max | |
def forward(self, x): | |
return self.relu(x + 3) * self.h_max / 6 | |
class BoxCoder(object): | |
def __init__(self, cfg): | |
self.cfg = cfg | |
def encode(self, gt_boxes, anchors): | |
TO_REMOVE = 1 # TODO remove | |
ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE | |
ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE | |
ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 | |
ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 | |
gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE | |
gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE | |
gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2 | |
gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2 | |
wx, wy, ww, wh = (10., 10., 5., 5.) | |
targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths | |
targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights | |
targets_dw = ww * torch.log(gt_widths / ex_widths) | |
targets_dh = wh * torch.log(gt_heights / ex_heights) | |
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1) | |
return targets | |
def decode(self, preds, anchors): | |
anchors = anchors.to(preds.dtype) | |
TO_REMOVE = 1 # TODO remove | |
widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE | |
heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE | |
ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2 | |
ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2 | |
wx, wy, ww, wh = (10., 10., 5., 5.) | |
dx = preds[:, 0::4] / wx | |
dy = preds[:, 1::4] / wy | |
dw = preds[:, 2::4] / ww | |
dh = preds[:, 3::4] / wh | |
# Prevent sending too large values into torch.exp() | |
dw = torch.clamp(dw, max=math.log(1000. / 16)) | |
dh = torch.clamp(dh, max=math.log(1000. / 16)) | |
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] | |
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] | |
pred_w = torch.exp(dw) * widths[:, None] | |
pred_h = torch.exp(dh) * heights[:, None] | |
pred_boxes = torch.zeros_like(preds) | |
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1) | |
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1) | |
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1) | |
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1) | |
return pred_boxes | |
class Conv3x3Norm(torch.nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
stride, | |
groups=1, | |
deformable=False, | |
bn_type=None): | |
super(Conv3x3Norm, self).__init__() | |
if deformable: | |
self.conv = ModulatedDeformConv(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, | |
groups=groups) | |
else: | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups) | |
if isinstance(bn_type, (list, tuple)): | |
assert len(bn_type) == 2 | |
assert bn_type[0] == "gn" | |
gn_group = bn_type[1] | |
bn_type = bn_type[0] | |
if bn_type == "bn": | |
bn_op = nn.BatchNorm2d(out_channels) | |
elif bn_type == "sbn": | |
bn_op = nn.SyncBatchNorm(out_channels) | |
elif bn_type == "nsbn": | |
bn_op = NaiveSyncBatchNorm2d(out_channels) | |
elif bn_type == "gn": | |
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=out_channels) | |
elif bn_type == "af": | |
bn_op = FrozenBatchNorm2d(out_channels) | |
if bn_type is not None: | |
self.bn = bn_op | |
else: | |
self.bn = None | |
def forward(self, input, **kwargs): | |
x = self.conv(input, **kwargs) | |
if self.bn: | |
x = self.bn(x) | |
return x | |
class DyConv(torch.nn.Module): | |
def __init__(self, | |
in_channels=256, | |
out_channels=256, | |
conv_func=nn.Conv2d, | |
use_dyfuse=True, | |
use_dyrelu=False, | |
use_deform=False | |
): | |
super(DyConv, self).__init__() | |
self.DyConv = nn.ModuleList() | |
self.DyConv.append(conv_func(in_channels, out_channels, 1)) | |
self.DyConv.append(conv_func(in_channels, out_channels, 1)) | |
self.DyConv.append(conv_func(in_channels, out_channels, 2)) | |
if use_dyfuse: | |
self.AttnConv = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels, 1, kernel_size=1), | |
nn.ReLU(inplace=True)) | |
self.h_sigmoid = h_sigmoid() | |
else: | |
self.AttnConv = None | |
if use_dyrelu: | |
self.relu = DYReLU(in_channels, out_channels) | |
else: | |
self.relu = nn.ReLU() | |
if use_deform: | |
self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1) | |
else: | |
self.offset = None | |
self.init_weights() | |
def init_weights(self): | |
for m in self.DyConv.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight.data, 0, 0.01) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
if self.AttnConv is not None: | |
for m in self.AttnConv.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.normal_(m.weight.data, 0, 0.01) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, inputs): | |
visual_feats = inputs["visual"] | |
language_dict_features = inputs["lang"] | |
next_x = [] | |
for level, feature in enumerate(visual_feats): | |
conv_args = dict() | |
if self.offset is not None: | |
offset_mask = self.offset(feature) | |
offset = offset_mask[:, :18, :, :] | |
mask = offset_mask[:, 18:, :, :].sigmoid() | |
conv_args = dict(offset=offset, mask=mask) | |
temp_fea = [self.DyConv[1](feature, **conv_args)] | |
if level > 0: | |
temp_fea.append(self.DyConv[2](visual_feats[level - 1], **conv_args)) | |
if level < len(visual_feats) - 1: | |
temp_fea.append(F.upsample_bilinear(self.DyConv[0](visual_feats[level + 1], **conv_args), | |
size=[feature.size(2), feature.size(3)])) | |
mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False) | |
if self.AttnConv is not None: | |
attn_fea = [] | |
res_fea = [] | |
for fea in temp_fea: | |
res_fea.append(fea) | |
attn_fea.append(self.AttnConv(fea)) | |
res_fea = torch.stack(res_fea) | |
spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea)) | |
mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False) | |
next_x.append(mean_fea) | |
next_x = [self.relu(item) for item in next_x] | |
features_dict = {"visual": next_x, | |
"lang": language_dict_features} | |
return features_dict | |
class BertEncoderLayer(BertPreTrainedModel): | |
def __init__(self, config, clamp_min_for_underflow = False, clamp_max_for_overflow = False): | |
super().__init__(config) | |
self.config = config | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
from maskrcnn_benchmark.modeling.rpn.modeling_bert import BertAttention, BertIntermediate, BertOutput | |
self.attention = BertAttention(config, clamp_min_for_underflow, clamp_max_for_overflow) | |
self.intermediate = BertIntermediate(config) | |
self.output = BertOutput(config) | |
def forward(self, inputs): | |
language_dict_features = inputs["lang"] | |
hidden_states = language_dict_features["hidden"] | |
attention_mask = language_dict_features["masks"] | |
device = hidden_states.device | |
input_shape = hidden_states.size()[:-1] | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
self_attention_outputs = self.attention( | |
hidden_states, | |
extended_attention_mask, | |
None, | |
output_attentions=False, | |
past_key_value=None, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
hidden_states = outputs[0] | |
language_dict_features["hidden"] = hidden_states | |
features_dict = {"visual": inputs["visual"], | |
"lang": language_dict_features | |
} | |
return features_dict | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class CLIPTransformerLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
d_model = self.config.MODEL.CLIP.WIDTH | |
n_head = self.config.MODEL.CLIP.HEADS | |
drop_path = self.config.MODEL.CLIP.DROP_PATH | |
self.context_length = self.config.MODEL.CLIP.CONTEXT_LENGTH | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)) | |
])) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = None | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Linear, nn.Conv2d)): | |
trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)): | |
nn.init.constant_(m.bias, 0) | |
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None): | |
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \ | |
if self.attn_mask is not None else None | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0] | |
def forward(self, inputs): | |
language_dict_features = inputs["lang"] | |
x = language_dict_features["hidden"] | |
mask = language_dict_features["masks"] | |
# get extended attention mask for nn.MultiHeadAttention | |
key_padding_mask = (1.0 - mask).to(torch.bool) | |
x = x.permute(1, 0, 2) | |
x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask)) | |
x = x + self.drop_path(self.mlp(self.ln_2(x))) | |
x = x.permute(1, 0, 2) | |
language_dict_features["hidden"] = x | |
features_dict = {"visual": inputs["visual"], | |
"lang": language_dict_features | |
} | |
return features_dict | |
class DummyLayer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, inputs): | |
return inputs | |
class VLFuse(torch.nn.Module): | |
""" | |
Early Fusion Module | |
""" | |
def __init__(self, cfg): | |
super(VLFuse, self).__init__() | |
self.init_configs(cfg) | |
self.cfg = cfg | |
self.use_checkpoint = False | |
if hasattr(cfg.MODEL.DYHEAD, 'USE_CHECKPOINT'): | |
self.use_checkpoint = cfg.MODEL.DYHEAD.USE_CHECKPOINT | |
self.dummy_tensor = torch.ones(1, dtype=torch.float32, requires_grad=True) | |
# early fusion module | |
print("EARLY FUSION ON, USING {}".format(cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE)) | |
if cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-S": | |
# single-direction (text->image) | |
# text -> image | |
self.t2i_attn = AttentionT2I(q_dim=self.joint_embedding_size, | |
k_dim=self.lang_dim, | |
embed_dim=self.embed_dim, | |
num_heads=self.n_head, | |
hidden_dim=self.t2i_hidden_dim, | |
dropout=0.1, | |
drop_path=.0, | |
init_values=1.0 / cfg.MODEL.DYHEAD.NUM_CONVS, | |
mode="t2i", | |
use_layer_scale=cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_LAYER_SCALE, | |
clamp_min_for_underflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MIN_FOR_UNDERFLOW, | |
clamp_max_for_overflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MAX_FOR_OVERFLOW | |
) | |
elif cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-B": | |
# bi-direction (text->image, image->text) | |
self.b_attn = BiAttentionBlockForCheckpoint(v_dim=self.joint_embedding_size, | |
l_dim=self.lang_dim, | |
embed_dim=self.embed_dim, | |
num_heads=self.n_head, | |
hidden_dim=self.i2t_hidden_dim, | |
dropout=0.1, | |
drop_path=.0, | |
init_values=1.0 / cfg.MODEL.DYHEAD.NUM_CONVS, | |
cfg=cfg | |
) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL and self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: | |
self.shrink_lang = FeatureResizer(self.lang_dim * 5, | |
self.lang_dim, 0.1) | |
elif cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "SCAN": | |
# single-direction (text->image) | |
self.mapping_lang = _make_mlp(self.lang_dim, | |
self.joint_embedding_size, | |
self.joint_embedding_dropout) | |
self.joint_fusion = nn.ModuleList([_make_conv(self.joint_inp_dim, self.joint_out_dim, 1) \ | |
for _ in range(5)]) | |
elif cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "FILM": | |
# single-direction (text->image) | |
self.mapping_lang = _make_mlp(self.lang_dim, | |
self.joint_embedding_size, | |
self.joint_embedding_dropout) | |
self.gamma = nn.ModuleList(nn.Linear(self.joint_embedding_size, self.joint_inp_dim) for _ in range(5)) | |
self.beta = nn.ModuleList(nn.Linear(self.joint_embedding_size, self.joint_inp_dim) for _ in range(5)) | |
self.joint_fusion = nn.ModuleList([_make_conv(self.joint_inp_dim, self.joint_out_dim, 1) \ | |
for _ in range(5)]) | |
else: | |
print("NO FUSION INVOLVED.") | |
def init_configs(self, cfg): | |
# common params | |
self.lang_model = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE | |
self.joint_embedding_size = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_SIZE | |
self.joint_embedding_dropout = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_DROPOUT | |
self.joint_mlp_layers = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_MLP_LAYERS | |
self.max_query_len = cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN | |
self.n_layers = cfg.MODEL.LANGUAGE_BACKBONE.N_LAYERS | |
self.coord_dim = 8 | |
self.joint_inp_dim = self.coord_dim + self.joint_embedding_size | |
self.joint_out_dim = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_OUT_SIZE | |
# mha params | |
self.n_head = 8 | |
self.embed_dim = 2048 | |
self.t2i_hidden_dim = 1024 # 256 * 4 | |
self.i2t_hidden_dim = 3072 # 768 * 4 | |
if self.lang_model in ["bert-base-uncased", "roberta-base", "clip"]: | |
self.lang_dim = cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM | |
else: | |
self.lang_dim = 1024 | |
def forward(self, x): | |
visual_features = x["visual"] | |
language_dict_features = x["lang"] | |
batch_size = visual_features[0].shape[0] | |
device = visual_features[0].device | |
fused_visual_features = None | |
fused_language_dict_features = None | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-S": | |
language_feature = language_dict_features['hidden'] | |
mask = language_dict_features['masks'] | |
# text -> image | |
if self.use_checkpoint: | |
q0, q1, q2, q3, q4 = checkpoint.checkpoint( | |
self.t2i_attn, | |
visual_features[0], visual_features[1], | |
visual_features[2], visual_features[3], | |
visual_features[4], | |
language_feature, language_feature, | |
mask, | |
self.dummy_tensor | |
) | |
else: | |
q0, q1, q2, q3, q4 = self.t2i_attn( | |
visual_features[0], visual_features[1], | |
visual_features[2], visual_features[3], | |
visual_features[4], | |
language_feature, language_feature, | |
attention_mask=mask | |
) | |
fused_visual_features = [q0, q1, q2, q3, q4] | |
fused_language_dict_features = language_dict_features | |
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "MHA-B": | |
if self.use_checkpoint: | |
q0, q1, q2, q3, q4, l0, l1, l2, l3, l4 = checkpoint.checkpoint(self.b_attn, | |
visual_features[0], visual_features[1], | |
visual_features[2], visual_features[3], | |
visual_features[4], | |
language_dict_features['hidden'], | |
language_dict_features['masks'], | |
self.dummy_tensor | |
) | |
else: | |
q0, q1, q2, q3, q4, l0, l1, l2, l3, l4 = self.b_attn( | |
visual_features[0], visual_features[1], | |
visual_features[2], visual_features[3], | |
visual_features[4], | |
language_dict_features['hidden'], | |
language_dict_features['masks'], | |
self.dummy_tensor | |
) | |
fused_visual_features = [q0, q1, q2, q3, q4] | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL and self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: | |
language_features = self.shrink_lang(torch.cat([l0, l1, l2, l3, l4], dim = -1)) | |
else: | |
language_features = l0 | |
language_dict_features['hidden'] = language_features | |
fused_language_dict_features = language_dict_features | |
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "SCAN": | |
# text -> image | |
language_feature = language_dict_features['aggregate'] | |
language_feature = self.mapping_lang(language_feature) | |
visu_feat = [] | |
for ii, feat in enumerate(visual_features): | |
attn_feat = func_attention(feat, language_feature, smooth=1, raw_feature_norm="softmax") | |
visu_feat.append(attn_feat) | |
fused_visual_features = [fusion(feat) for feat, fusion in zip(visu_feat, self.joint_fusion)] | |
fused_language_dict_features = language_dict_features | |
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TYPE == "FILM": | |
# text -> image | |
# relative position embedding | |
coord_feats = [_make_coord(batch_size, x.shape[2], x.shape[3]) for x in visual_features] | |
# I only use a global representation of language | |
# you can also use more complex modeling using word-level representations | |
# Usage: lang_feat = lang_feat['words'] shape [seq_len, dim] | |
language_feature = language_dict_features['aggregate'] | |
language_feature = self.mapping_lang(language_feature) | |
# attention mechanism for fusion | |
gamma = [F.tanh(gamma(language_feature)) for gamma in self.gamma] | |
beta = [F.tanh(beta(language_feature)) for beta in self.beta] | |
visu_feat = [] | |
for ii, feat in enumerate(visual_features): | |
coord_feat = coord_feats[ii].to(device) | |
feat = torch.cat([feat, coord_feat], dim=1) | |
b = beta[ii].view(batch_size, -1, 1, 1).expand_as(feat) | |
g = gamma[ii].view(batch_size, -1, 1, 1).expand_as(feat) | |
feat = F.relu(g * feat + b) | |
visu_feat.append(feat) | |
fused_visual_features = [fusion(feat) for feat, fusion in zip(visu_feat, self.joint_fusion)] | |
fused_language_dict_features = language_dict_features | |
else: | |
fused_visual_features = visual_features | |
fused_language_dict_features = language_dict_features | |
features_dict = {"visual": fused_visual_features, | |
"lang": fused_language_dict_features} | |
return features_dict | |
class VLDyHead(torch.nn.Module): | |
def __init__(self, cfg): | |
super(VLDyHead, self).__init__() | |
self.cfg = cfg | |
# bert_cfg = BertConfig.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE) | |
if cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "bert-base-uncased": | |
lang_cfg = BertConfig.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE) | |
elif cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "clip": | |
lang_cfg = cfg | |
else: | |
lang_cfg = None | |
raise NotImplementedError | |
num_classes = cfg.MODEL.DYHEAD.NUM_CLASSES - 1 | |
num_tokens = cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN | |
num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE | |
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
channels = cfg.MODEL.DYHEAD.CHANNELS | |
if cfg.MODEL.DYHEAD.USE_GN: | |
bn_type = ['gn', cfg.MODEL.GROUP_NORM.NUM_GROUPS] | |
elif cfg.MODEL.DYHEAD.USE_NSYNCBN: | |
bn_type = 'nsbn' | |
elif cfg.MODEL.DYHEAD.USE_SYNCBN: | |
bn_type = 'sbn' | |
else: | |
bn_type = None | |
use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU | |
use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE | |
use_deform = cfg.MODEL.DYHEAD.USE_DFCONV | |
if cfg.MODEL.DYHEAD.CONV_FUNC: | |
conv_func = lambda i, o, s: eval(cfg.MODEL.DYHEAD.CONV_FUNC)(i, o, s, bn_type=bn_type) | |
else: | |
conv_func = lambda i, o, s: Conv3x3Norm(i, o, s, deformable=use_deform, bn_type=bn_type) | |
dyhead_tower = [] | |
for i in range(cfg.MODEL.DYHEAD.NUM_CONVS): | |
if cfg.MODEL.DYHEAD.FUSE_CONFIG.EARLY_FUSE_ON: | |
# cross-modality fusion | |
dyhead_tower.append( | |
VLFuse(cfg) | |
) | |
# self language path | |
if i < cfg.MODEL.DYHEAD.NUM_CONVS - 1 or cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_FUSED_FEATURES_DOT_PRODUCT: | |
# dyhead_tower.append( | |
# BertEncoderLayer( | |
# bert_cfg, | |
# clamp_min_for_underflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MIN_FOR_UNDERFLOW, | |
# clamp_max_for_overflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MAX_FOR_OVERFLOW) | |
# ) | |
if cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "bert-base-uncased": | |
dyhead_tower.append( | |
BertEncoderLayer( | |
lang_cfg, | |
clamp_min_for_underflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MIN_FOR_UNDERFLOW, | |
clamp_max_for_overflow=cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_BERTATTN_MAX_FOR_OVERFLOW) | |
) | |
elif cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "clip": | |
dyhead_tower.append( | |
CLIPTransformerLayer(lang_cfg) | |
) | |
else: | |
raise NotImplementedError | |
else: | |
dyhead_tower.append( | |
DummyLayer() | |
) | |
# self vision path | |
dyhead_tower.append( | |
DyConv( | |
in_channels if i == 0 else channels, | |
channels, | |
conv_func=conv_func, | |
use_dyrelu=(use_dyrelu and in_channels == channels) if i == 0 else use_dyrelu, | |
use_dyfuse=(use_dyfuse and in_channels == channels) if i == 0 else use_dyfuse, | |
use_deform=(use_deform and in_channels == channels) if i == 0 else use_deform, | |
) | |
) | |
self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower)) | |
self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1) | |
self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=1) | |
self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=1) | |
# initialize the bias for focal loss | |
prior_prob = cfg.MODEL.DYHEAD.PRIOR_PROB | |
bias_value = -math.log((1 - prior_prob) / prior_prob) | |
log_scale = self.cfg.MODEL.DYHEAD.LOG_SCALE | |
# soft token head | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: | |
self.token_logits = nn.Conv2d(channels, num_anchors * num_tokens, kernel_size=1) | |
# ABLATION | |
# self.token_logits = nn.Conv2d(channels, num_anchors * num_tokens, kernel_size=1, bias=False) | |
# self.bias = nn.Parameter(torch.zeros(channels), requires_grad=True) | |
# self.bias0 = nn.Parameter(torch.Tensor([bias_value]), requires_grad=True) | |
# contrastive alignment head | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS == False | |
contrastive_hdim = cfg.MODEL.DYHEAD.FUSE_CONFIG.CONTRASTIVE_HIDDEN_DIM | |
self.contrastive_align_projection_image = nn.Conv2d(channels, num_anchors * contrastive_hdim, kernel_size=1) | |
self.contrastive_align_projection_text = nn.Linear(channels, contrastive_hdim, bias=True) | |
self.log_scale = nn.Parameter(torch.Tensor([log_scale]), requires_grad=True) | |
# dot product soft token head | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: | |
assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS == False | |
self.dot_product_projection_image = nn.Identity() | |
self.dot_product_projection_text = nn.Linear(self.cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM, | |
num_anchors * channels, bias=True) | |
self.log_scale = nn.Parameter(torch.Tensor([log_scale]), requires_grad=True) | |
# DEBUG | |
# self.bias = nn.Parameter(torch.zeros(channels), requires_grad=True) | |
self.bias_lang = nn.Parameter(torch.zeros(self.cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM), requires_grad=True) | |
self.bias0 = nn.Parameter(torch.Tensor([bias_value]), requires_grad=True) | |
# initialization | |
for modules in [self.cls_logits, self.bbox_pred, | |
self.centerness]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) | |
torch.nn.init.constant_(self.cls_logits.bias, bias_value) | |
# if use soft token loss | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: | |
for modules in [self.token_logits]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
torch.nn.init.constant_(self.token_logits.bias, bias_value) | |
# print(torch.norm(self.token_logits.weight)) | |
# if use contrastive loss | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
for modules in [self.contrastive_align_projection_image]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
# if use dot product token loss | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: | |
for modules in [self.dot_product_projection_image]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, bias_value) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: | |
if cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE == "clip": | |
lang_cfg = BertConfig.from_pretrained("bert-base-uncased") | |
lang_cfg.hidden_size = cfg.MODEL.CLIP.WIDTH | |
lang_cfg.vocab_size = cfg.MODEL.CLIP.VOCAB_SIZE | |
self.mlm_head = BertLMPredictionHead( | |
lang_cfg | |
) #nn.Linear(hidden_size, config.vocab_size, bias=False) | |
def forward(self, x, language_dict_features=None, embedding=None, swint_feature_c4=None): | |
logits = [] | |
bbox_reg = [] | |
centerness = [] | |
feat_inputs = {"visual": x, | |
"lang": language_dict_features} | |
dyhead_tower = self.dyhead_tower(feat_inputs) | |
# soft token | |
t_logits = None | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: | |
t_logits = [] | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_FUSED_FEATURES_DOT_PRODUCT: | |
embedding = dyhead_tower["lang"]["hidden"] | |
# MLM loss | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS: | |
mlm_logits = self.mlm_head(embedding) | |
else: | |
mlm_logits = None | |
# contrastive | |
contrastive_logits = None | |
proj_tokens = None | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
contrastive_logits = [] | |
# follow MDETR's way | |
proj_tokens = F.normalize( | |
self.contrastive_align_projection_text(embedding), p=2, dim=-1 | |
) | |
# dot product soft token | |
dot_product_logits = None | |
dot_product_proj_tokens = None | |
dot_product_proj_tokens_bias = None | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: | |
dot_product_logits = [] | |
# norm | |
embedding = F.normalize(embedding, p=2, dim=-1) | |
dot_product_proj_tokens = self.dot_product_projection_text(embedding / 2.0) | |
# w/o norm | |
# dot_product_proj_tokens = self.dot_product_projection_text(embedding / 28.0) | |
dot_product_proj_tokens_bias = torch.matmul(embedding, self.bias_lang) + self.bias0 | |
# shallow contrastive (original feature from image & text encoder) | |
shallow_img_emb_feats = None | |
shallow_text_emb = None | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS \ | |
or self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS: | |
shallow_img_emb_feats = [] | |
shallow_text_emb = embedding | |
# print([v.shape for v in x]) | |
# shallow contrastive: use the feature from swint backbone | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS: | |
for b, feature in enumerate(swint_feature_c4): | |
# BF, CF, HF, WF = feat.shape | |
# shallow_img_emb = permute_and_flatten(feat, BF, -1, CF, HF, WF) | |
shallow_img_emb_feats.append(feature) | |
fused_visual_features = None | |
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES: | |
fused_visual_features = [] | |
# use the feature from FPN | |
for l, feature in enumerate(x): | |
logits.append(self.cls_logits(dyhead_tower["visual"][l])) | |
bbox_pred = self.scales[l](self.bbox_pred(dyhead_tower["visual"][l])) | |
bbox_reg.append(bbox_pred) | |
centerness.append(self.centerness(dyhead_tower["visual"][l])) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: | |
t_logits.append(self.token_logits(dyhead_tower["visual"][l])) | |
# ABLATION | |
# b = self.bias.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
# x = dyhead_tower["visual"][l] | |
# B, C, H, W = x.shape | |
# bias = b.repeat(B, 1, H, W) | |
# t_logits.append(self.token_logits(dyhead_tower["visual"][l] + bias) + self.bias0) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
x = dyhead_tower["visual"][l] | |
B, _, H, W = x.shape | |
C = proj_tokens.shape[2] | |
proj_queries = self.contrastive_align_projection_image(dyhead_tower["visual"][l]) | |
proj_queries = permute_and_flatten(proj_queries, B, -1, C, H, W) | |
normalized_img_emb = F.normalize(proj_queries, p=2, dim=-1) | |
normalized_text_emb = proj_tokens | |
contrastive_logit = ( | |
torch.matmul(normalized_img_emb, normalized_text_emb.transpose(-1, -2)) / self.log_scale.exp()) | |
contrastive_logits.append(contrastive_logit) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: | |
x = dyhead_tower["visual"][l] | |
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES: | |
fused_visual_features.append(x) | |
B, C, H, W = x.shape | |
# add bias (language) | |
dot_product_proj_queries = self.dot_product_projection_image(x) | |
dot_product_proj_queries = permute_and_flatten(dot_product_proj_queries, B, -1, C, H, W) | |
A = dot_product_proj_queries.shape[1] | |
bias = dot_product_proj_tokens_bias.unsqueeze(1).repeat(1, A, 1) | |
dot_product_logit = (torch.matmul(dot_product_proj_queries, dot_product_proj_tokens.transpose(-1, -2)) / self.log_scale.exp()) + bias | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_DOT_PRODUCT: | |
dot_product_logit = torch.clamp(dot_product_logit, max=50000) | |
dot_product_logit = torch.clamp(dot_product_logit, min=-50000) | |
dot_product_logits.append(dot_product_logit) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS: | |
feat = feature | |
BF, CF, HF, WF = feat.shape | |
shallow_img_emb = permute_and_flatten(feat, BF, -1, CF, HF, WF) | |
shallow_img_emb_feats.append(shallow_img_emb) | |
# no matter the feature is from backboone or from fpn, we use shallow_img_embs all the time | |
if shallow_img_emb_feats is not None and shallow_text_emb is not None: | |
# shallow_img_embs = torch.cat(shallow_img_embs, dim=1) | |
proj_tokens = shallow_text_emb | |
return logits, bbox_reg, centerness, t_logits, proj_tokens, contrastive_logits, dot_product_logits, mlm_logits, shallow_img_emb_feats, fused_visual_features | |
class VLDyHeadModule(torch.nn.Module): | |
def __init__(self, cfg): | |
super(VLDyHeadModule, self).__init__() | |
self.cfg = cfg | |
self.head = VLDyHead(cfg) | |
box_coder = BoxCoder(cfg) | |
self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder) | |
self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True) | |
self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False) | |
self.anchor_generator = make_anchor_generator_complex(cfg) | |
self.lang_model = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE | |
self.joint_embedding_size = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_SIZE | |
self.joint_embedding_dropout = cfg.MODEL.DYHEAD.FUSE_CONFIG.JOINT_EMB_DROPOUT | |
if self.lang_model in ["bert-base-uncased", "roberta-base", "clip"]: | |
self.lang_dim = cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM | |
else: | |
self.lang_dim = 1024 | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
self.resizer = FeatureResizer( | |
input_feat_size=self.lang_dim, | |
output_feat_size=self.joint_embedding_size, | |
dropout=self.joint_embedding_dropout | |
) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER: | |
self.tunable_linear = torch.nn.Linear(self.lang_dim, 1000, bias=False) | |
self.tunable_linear.weight.data.fill_(0.0) | |
def forward(self, images, features, targets=None, | |
language_dict_features=None, | |
positive_map=None, | |
captions=None, | |
swint_feature_c4=None | |
): | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
# resizer needed | |
embedding = language_dict_features['embedded'] | |
embedding = self.resizer(embedding) | |
elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: | |
# no resizer needed | |
embedding = language_dict_features['embedded'] | |
else: | |
embedding = None | |
if "masks" in language_dict_features: | |
text_masks = language_dict_features["masks"] | |
else: | |
text_masks = None | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER: | |
embedding = self.tunable_linear.weight[:embedding.size(1), :].unsqueeze(0) + embedding | |
language_dict_features['embedded'] = embedding | |
language_dict_features['hidden'] = self.tunable_linear.weight[:embedding.size(1), :].unsqueeze(0) + language_dict_features['hidden'] | |
box_cls, box_regression, centerness, token_logits, \ | |
proj_tokens, contrastive_logits, dot_product_logits, mlm_logits, shallow_img_emb_feats, fused_visual_features = self.head(features, | |
language_dict_features, | |
embedding, | |
swint_feature_c4 | |
) | |
anchors = self.anchor_generator(images, features) | |
if self.training: | |
return self._forward_train(box_cls, box_regression, centerness, targets, anchors, | |
captions, | |
positive_map, | |
token_logits, | |
proj_tokens, | |
contrastive_logits, | |
dot_product_logits, | |
text_masks, | |
mlm_logits = mlm_logits, | |
mlm_labels = language_dict_features["mlm_labels"], | |
shallow_img_emb_feats=shallow_img_emb_feats, | |
fused_visual_features=fused_visual_features | |
) | |
else: | |
return self._forward_test(box_regression, centerness, anchors, | |
box_cls, | |
token_logits, | |
dot_product_logits, | |
positive_map, | |
fused_visual_features=fused_visual_features | |
) | |
def _forward_train(self, box_cls, box_regression, centerness, targets, anchors, | |
captions=None, | |
positive_map=None, | |
token_logits=None, | |
proj_tokens=None, | |
contrastive_logits=None, | |
dot_product_logits=None, | |
text_masks=None, | |
mlm_logits=None, | |
mlm_labels=None, | |
shallow_img_emb_feats=None, | |
fused_visual_features=None | |
): | |
loss_box_cls, loss_box_reg, loss_centerness, loss_token, loss_contrastive_align, loss_dot_product_token, loss_shallow_contrastive = self.loss_evaluator( | |
box_cls, box_regression, centerness, targets, anchors, | |
captions, | |
positive_map, | |
token_logits, | |
proj_tokens, | |
contrastive_logits, | |
dot_product_logits, | |
text_masks, | |
shallow_img_emb_feats | |
) | |
losses = { | |
# "loss_cls": loss_box_cls, | |
"loss_reg": loss_box_reg, | |
"loss_centerness": loss_centerness | |
} | |
if mlm_labels is not None and mlm_logits is not None: | |
losses["mlm_loss"] = nn.CrossEntropyLoss(ignore_index = -100)(mlm_logits.view(-1, mlm_logits.size(-1)), mlm_labels.view(-1)) * self.cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_COEF | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CLASSIFICATION_LOSS: | |
losses["loss_cls"] = loss_box_cls | |
else: | |
losses["loss_cls"] = 0.0 * loss_box_cls | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS: | |
losses["loss_token"] = loss_token * self.cfg.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_LOSS_WEIGHT | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS: | |
losses["loss_contrastive_align"] = loss_contrastive_align * \ | |
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.CONTRASTIVE_ALIGN_LOSS_WEIGHT | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS: | |
losses["loss_dot_product_token"] = loss_dot_product_token * \ | |
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DOT_PRODUCT_TOKEN_LOSS_WEIGHT | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS or \ | |
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS: | |
losses["loss_shallow_contrastive"] = loss_shallow_contrastive * \ | |
self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_CONTRASTIVE_LOSS_WEIGHT | |
if self.cfg.MODEL.RPN_ONLY: | |
return None, losses, None | |
else: | |
# Let's just use one image per batch | |
assert (box_regression[0].shape[0]) == 1 | |
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=1) | |
boxes = self.box_selector_train(box_regression, centerness, anchors, | |
box_cls, | |
token_logits, | |
dot_product_logits, | |
positive_map=positive_map_label_to_token | |
) | |
train_boxes = [] | |
for b, t in zip(boxes, targets): | |
tb = t.copy_with_fields(["labels"]) | |
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device)) | |
train_boxes.append(cat_boxlist([b, tb])) | |
return train_boxes, losses, fused_visual_features | |
def _forward_test(self, box_regression, centerness, anchors, | |
box_cls=None, | |
token_logits=None, | |
dot_product_logits=None, | |
positive_map=None, | |
fused_visual_features=None | |
): | |
boxes = self.box_selector_test(box_regression, centerness, anchors, | |
box_cls, | |
token_logits, | |
dot_product_logits, | |
positive_map, | |
) | |
return boxes, {}, fused_visual_features | |