Spaces:
Runtime error
Runtime error
Add video demo
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import warnings
|
4 |
|
@@ -9,7 +11,9 @@ os.system("python setup.py build develop --user")
|
|
9 |
from maskrcnn_benchmark.config import cfg
|
10 |
from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo
|
11 |
import vqa
|
12 |
-
import
|
|
|
|
|
13 |
|
14 |
# Use this command for evaluate the GLIP-T model
|
15 |
config_file = "configs/glip_Swin_T_O365_GoldG.yaml"
|
@@ -30,28 +34,67 @@ glip_demo = GLIPDemo(
|
|
30 |
)
|
31 |
blip_demo = vqa.VQA(
|
32 |
model_path = 'checkpoints/model_base_vqa_capfilt_large.pth'
|
33 |
-
)
|
34 |
|
35 |
-
def
|
36 |
result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5)
|
|
|
37 |
answer = blip_demo.vqa_demo(image, question)
|
38 |
-
return result
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
from numpy import true_divide
|
4 |
import gradio as gr
|
5 |
import warnings
|
6 |
|
|
|
11 |
from maskrcnn_benchmark.config import cfg
|
12 |
from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo
|
13 |
import vqa
|
14 |
+
import cv2
|
15 |
+
from PIL import Image
|
16 |
+
import numpy as np
|
17 |
|
18 |
# Use this command for evaluate the GLIP-T model
|
19 |
config_file = "configs/glip_Swin_T_O365_GoldG.yaml"
|
|
|
34 |
)
|
35 |
blip_demo = vqa.VQA(
|
36 |
model_path = 'checkpoints/model_base_vqa_capfilt_large.pth'
|
|
|
37 |
|
38 |
+
def predict_image(image, object, question):
|
39 |
result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5)
|
40 |
+
result = result[:, :, [2, 1, 0]]
|
41 |
answer = blip_demo.vqa_demo(image, question)
|
42 |
+
return result, answer
|
43 |
+
|
44 |
+
def predict_video(video, object, question, frame_drop_value):
|
45 |
+
vid = cv2.VideoCapture(video)
|
46 |
+
count = 0
|
47 |
+
while True:
|
48 |
+
ret, frame = vid.read()
|
49 |
+
if ret:
|
50 |
+
count+=1
|
51 |
+
if count % frame_drop_value == 0:
|
52 |
+
# image = Image.fromarray(frame)
|
53 |
+
image = frame
|
54 |
+
cv2.putText(
|
55 |
+
img = image,
|
56 |
+
text = str(count),
|
57 |
+
org = (20, 20),
|
58 |
+
fontFace = cv2.FONT_HERSHEY_DUPLEX,
|
59 |
+
fontScale = 0.5,
|
60 |
+
color = (125, 246, 55),
|
61 |
+
thickness = 1)
|
62 |
+
result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5)
|
63 |
+
answer = blip_demo.vqa_demo(image, question)
|
64 |
+
yield result, answer
|
65 |
+
else:
|
66 |
+
break
|
67 |
+
|
68 |
+
yield result, answer
|
69 |
+
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
gr.Markdown("Text-Based Object Detection and Visual Question Answering")
|
72 |
+
with gr.Tab("Image"):
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
image_input = gr.Image(label='input image')
|
76 |
+
obj_input = gr.Textbox(label='Objects', lines=1, placeholder="Objects here..")
|
77 |
+
vqa_input = gr.Textbox(label='Question', lines=1, placeholder="Question here..")
|
78 |
+
image_button = gr.Button("Submit")
|
79 |
+
|
80 |
+
with gr.Column():
|
81 |
+
image_output = gr.outputs.Image(type="pil", label="grounding results")
|
82 |
+
vqa_output = gr.Textbox(label="Answer")
|
83 |
+
|
84 |
+
with gr.Tab("Video"):
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
video_input = gr.PlayableVideo(label='input video', mirror_webcam=False)
|
88 |
+
obj_input_video = gr.Textbox(label='Objects', lines=1, placeholder="Objects here..")
|
89 |
+
vqa_input_video = gr.Textbox(label='Question', lines=1, placeholder="Question here..")
|
90 |
+
frame_drop_input = gr.Slider(label='Frames drop value', minimum=0, maximum=30, step=1, value=5)
|
91 |
+
video_button = gr.Button("Submit")
|
92 |
+
|
93 |
+
with gr.Column():
|
94 |
+
video_output = gr.outputs.Image(type="pil", label="grounding results")
|
95 |
+
vqa_output_video = gr.Textbox(label="Answer")
|
96 |
+
|
97 |
+
image_button.click(predict_image, inputs=[image_input, obj_input, vqa_input], outputs=[image_output, vqa_output])
|
98 |
+
video_button.click(predict_video, inputs=[video_input, obj_input_video, vqa_input_video, frame_drop_input], outputs=[video_output, vqa_output_video])
|
99 |
+
demo.queue()
|
100 |
+
demo.launch()
|