import torch from torch import nn class MixedOperationRandom(nn.Module): def __init__(self, search_ops): super(MixedOperationRandom, self).__init__() self.ops = nn.ModuleList(search_ops) self.num_ops = len(search_ops) def forward(self, x, x_path=None): if x_path is None: output = sum(op(x) for op in self.ops) / self.num_ops else: assert isinstance(x_path, (int, float)) and 0 <= x_path < self.num_ops or isinstance(x_path, torch.Tensor) if isinstance(x_path, (int, float)): x_path = int(x_path) assert 0 <= x_path < self.num_ops output = self.ops[x_path](x) elif isinstance(x_path, torch.Tensor): assert x_path.size(0) == x.size(0), 'batch_size should match length of y_idx' output = torch.cat([self.ops[int(x_path[i].item())](x.narrow(0, i, 1)) for i in range(x.size(0))], dim=0) return output