# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import math import numpy as np import torch from torch import nn from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.image_list import ImageList from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist class BufferList(nn.Module): """ Similar to nn.ParameterList, but for buffers """ def __init__(self, buffers=None): super(BufferList, self).__init__() if buffers is not None: self.extend(buffers) def extend(self, buffers): offset = len(self) for i, buffer in enumerate(buffers): self.register_buffer(str(offset + i), buffer) return self def __len__(self): return len(self._buffers) def __iter__(self): return iter(self._buffers.values()) class AnchorGenerator(nn.Module): """ For a set of image sizes and feature maps, computes a set of anchors """ def __init__( self, sizes=(128, 256, 512), aspect_ratios=(0.5, 1.0, 2.0), anchor_strides=(8, 16, 32), straddle_thresh=0, ): super(AnchorGenerator, self).__init__() if len(anchor_strides) == 1: anchor_stride = anchor_strides[0] cell_anchors = [ generate_anchors(anchor_stride, sizes, aspect_ratios).float() ] else: if len(anchor_strides) != len(sizes): raise RuntimeError("FPN should have #anchor_strides == #sizes") cell_anchors = [ generate_anchors( anchor_stride, size if isinstance(size, (tuple, list)) else (size,), aspect_ratios ).float() for anchor_stride, size in zip(anchor_strides, sizes) ] self.strides = anchor_strides self.cell_anchors = BufferList(cell_anchors) self.straddle_thresh = straddle_thresh def num_anchors_per_location(self): return [len(cell_anchors) for cell_anchors in self.cell_anchors] def grid_anchors(self, grid_sizes): anchors = [] for size, stride, base_anchors in zip( grid_sizes, self.strides, self.cell_anchors ): grid_height, grid_width = size device = base_anchors.device shifts_x = torch.arange( 0, grid_width * stride, step=stride, dtype=torch.float32, device=device ) shifts_y = torch.arange( 0, grid_height * stride, step=stride, dtype=torch.float32, device=device ) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) anchors.append( (shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4) ) return anchors def add_visibility_to(self, boxlist): image_width, image_height = boxlist.size anchors = boxlist.bbox if self.straddle_thresh >= 0: inds_inside = ( (anchors[..., 0] >= -self.straddle_thresh) & (anchors[..., 1] >= -self.straddle_thresh) & (anchors[..., 2] < image_width + self.straddle_thresh) & (anchors[..., 3] < image_height + self.straddle_thresh) ) else: device = anchors.device inds_inside = torch.ones(anchors.shape[0], dtype=torch.bool, device=device) boxlist.add_field("visibility", inds_inside) def forward(self, image_list, feature_maps): grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors = [] if isinstance(image_list, ImageList): for i, (image_height, image_width) in enumerate(image_list.image_sizes): anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: boxlist = BoxList( anchors_per_feature_map, (image_width, image_height), mode="xyxy" ) self.add_visibility_to(boxlist) anchors_in_image.append(boxlist) anchors.append(anchors_in_image) else: image_height, image_width = [int(x) for x in image_list.size()[-2:]] anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: boxlist = BoxList( anchors_per_feature_map, (image_width, image_height), mode="xyxy" ) self.add_visibility_to(boxlist) anchors_in_image.append(boxlist) anchors.append(anchors_in_image) return anchors def make_anchor_generator(config): anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS anchor_stride = config.MODEL.RPN.ANCHOR_STRIDE straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH if config.MODEL.RPN.USE_FPN: assert len(anchor_stride) == len( anchor_sizes ), "FPN should have len(ANCHOR_STRIDE) == len(ANCHOR_SIZES)" else: assert len(anchor_stride) == 1, "Non-FPN should have a single ANCHOR_STRIDE" anchor_generator = AnchorGenerator( anchor_sizes, aspect_ratios, anchor_stride, straddle_thresh ) return anchor_generator def make_anchor_generator_complex(config): anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS anchor_strides = config.MODEL.RPN.ANCHOR_STRIDE straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH octave = config.MODEL.RPN.OCTAVE scales_per_octave = config.MODEL.RPN.SCALES_PER_OCTAVE if config.MODEL.RPN.USE_FPN: assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now" new_anchor_sizes = [] for size in anchor_sizes: per_layer_anchor_sizes = [] for scale_per_octave in range(scales_per_octave): octave_scale = octave ** (scale_per_octave / float(scales_per_octave)) per_layer_anchor_sizes.append(octave_scale * size) new_anchor_sizes.append(tuple(per_layer_anchor_sizes)) else: assert len(anchor_strides) == 1, "Non-FPN should have a single ANCHOR_STRIDE" new_anchor_sizes = anchor_sizes anchor_generator = AnchorGenerator( tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh ) return anchor_generator class CenterAnchorGenerator(nn.Module): """ For a set of image sizes and feature maps, computes a set of anchors """ def __init__( self, sizes=(128, 256, 512), aspect_ratios=(0.5, 1.0, 2.0), anchor_strides=(8, 16, 32), straddle_thresh=0, anchor_shift=(0.0, 0.0, 0.0, 0.0), use_relative=False ): super(CenterAnchorGenerator, self).__init__() self.sizes = sizes self.aspect_ratios = aspect_ratios self.strides = anchor_strides self.straddle_thresh = straddle_thresh self.anchor_shift = anchor_shift self.use_relative = use_relative def add_visibility_to(self, boxlist): image_width, image_height = boxlist.size anchors = boxlist.bbox if self.straddle_thresh >= 0: inds_inside = ( (anchors[..., 0] >= -self.straddle_thresh) & (anchors[..., 1] >= -self.straddle_thresh) & (anchors[..., 2] < image_width + self.straddle_thresh) & (anchors[..., 3] < image_height + self.straddle_thresh) ) else: device = anchors.device inds_inside = torch.ones(anchors.shape[0], dtype=torch.uint8, device=device) boxlist.add_field("visibility", inds_inside) def forward(self, centers, image_sizes, feature_maps): shift_left, shift_top, shift_right, shift_down = self.anchor_shift grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] anchors = [] for i, ((image_height, image_width), center_bbox) in enumerate(zip(image_sizes, centers)): center = center_bbox.get_field("centers") boxlist_per_level = [] for size, fsize in zip(self.sizes, grid_sizes): for ratios in self.aspect_ratios: size_ratios = size*size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors_per_level = torch.cat( ( center[:,0,None] - 0.5 * (1 + shift_left) * (ws - 1), center[:,1,None] - 0.5 * (1 + shift_top) * (hs - 1), center[:,0,None] + 0.5 * (1 + shift_right) * (ws - 1), center[:,1,None] + 0.5 * (1 + shift_down) * (hs - 1), ), dim=1 ) boxlist = BoxList(anchors_per_level, (image_width, image_height), mode="xyxy") boxlist.add_field('cbox', center_bbox) self.add_visibility_to(boxlist) boxlist_per_level.append(boxlist) if self.use_relative: area = center_bbox.area() for ratios in self.aspect_ratios: size_ratios = area / ratios ws = torch.round(torch.sqrt(size_ratios)) hs = torch.round(ws * ratios) anchors_per_level = torch.stack( ( center[:,0] - (1 + shift_left) * ws, center[:,1] - (1 + shift_top) * hs, center[:,0] + (1 + shift_right) * ws, center[:,1] + (1 + shift_down) * hs, ), dim=1 ) boxlist = BoxList(anchors_per_level, (image_width, image_height), mode="xyxy") boxlist.add_field('cbox', center_bbox) self.add_visibility_to(boxlist) boxlist_per_level.append(boxlist) anchors_in_image = cat_boxlist(boxlist_per_level) anchors.append(anchors_in_image) return anchors def make_center_anchor_generator(config): anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS anchor_strides = config.MODEL.RPN.ANCHOR_STRIDE straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH octave = config.MODEL.RPN.OCTAVE scales_per_octave = config.MODEL.RPN.SCALES_PER_OCTAVE anchor_shift = config.MODEL.RPN.ANCHOR_SHIFT use_relative = config.MODEL.RPN.USE_RELATIVE_SIZE if config.MODEL.RPN.USE_FPN: assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now" new_anchor_sizes = [] for size in anchor_sizes: per_layer_anchor_sizes = [] for scale_per_octave in range(scales_per_octave): octave_scale = octave ** (scale_per_octave / float(scales_per_octave)) per_layer_anchor_sizes.append(octave_scale * size) new_anchor_sizes.append(tuple(per_layer_anchor_sizes)) else: assert len(anchor_strides) == 1, "Non-FPN should have a single ANCHOR_STRIDE" new_anchor_sizes = anchor_sizes anchor_generator = CenterAnchorGenerator( tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh, anchor_shift, use_relative ) return anchor_generator # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick and Sean Bell # -------------------------------------------------------- # Verify that we compute the same anchors as Shaoqing's matlab implementation: # # >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat # >> anchors # # anchors = # # -83 -39 100 56 # -175 -87 192 104 # -359 -183 376 200 # -55 -55 72 72 # -119 -119 136 136 # -247 -247 264 264 # -35 -79 52 96 # -79 -167 96 184 # -167 -343 184 360 # array([[ -83., -39., 100., 56.], # [-175., -87., 192., 104.], # [-359., -183., 376., 200.], # [ -55., -55., 72., 72.], # [-119., -119., 136., 136.], # [-247., -247., 264., 264.], # [ -35., -79., 52., 96.], # [ -79., -167., 96., 184.], # [-167., -343., 184., 360.]]) def generate_anchors( stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2) ): """Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors are centered on stride / 2, have (approximate) sqrt areas of the specified sizes, and aspect ratios as given. """ return _generate_anchors( stride, np.array(sizes, dtype=np.float) / stride, np.array(aspect_ratios, dtype=np.float), ) def _generate_anchors(base_size, scales, aspect_ratios): """Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, base_size - 1, base_size - 1) window. """ anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1 anchors = _ratio_enum(anchor, aspect_ratios) anchors = np.vstack( [_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])] ) return torch.from_numpy(anchors) def _whctrs(anchor): """Return width, height, x center, and y center for an anchor (window).""" w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def _mkanchors(ws, hs, x_ctr, y_ctr): """Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack( ( x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1), ) ) return anchors def _ratio_enum(anchor, ratios): """Enumerate a set of anchors for each aspect ratio wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _scale_enum(anchor, scales): """Enumerate a set of anchors for each scale wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) ws = w * scales hs = h * scales anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors