# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch import torch.nn.functional as F from torch import nn class FPN(nn.Module): """ Module that adds FPN on top of a list of feature maps. The feature maps are currently supposed to be in increasing depth order, and must be consecutive """ def __init__( self, in_channels_list, out_channels, conv_block, top_blocks=None, drop_block=None, use_spp=False, use_pan=False, return_swint_feature_before_fusion=False ): """ Arguments: in_channels_list (list[int]): number of channels for each feature map that will be fed out_channels (int): number of channels of the FPN representation top_blocks (nn.Module or None): if provided, an extra operation will be performed on the output of the last (smallest resolution) FPN output, and the result will extend the result list """ super(FPN, self).__init__() self.inner_blocks = [] self.layer_blocks = [] self.pan_blocks = [] if use_pan else None self.spp_block = SPPLayer() if use_spp else None self.return_swint_feature_before_fusion = return_swint_feature_before_fusion for idx, in_channels in enumerate(in_channels_list, 1): inner_block = "fpn_inner{}".format(idx) layer_block = "fpn_layer{}".format(idx) if in_channels == 0: continue if idx==len(in_channels_list) and use_spp: in_channels = in_channels*4 inner_block_module = conv_block(in_channels, out_channels, 1) layer_block_module = conv_block(out_channels, out_channels, 3, 1) self.add_module(inner_block, inner_block_module) self.add_module(layer_block, layer_block_module) self.inner_blocks.append(inner_block) self.layer_blocks.append(layer_block) if use_pan: pan_in_block = "pan_in_layer{}".format(idx) pan_in_block_module = conv_block(out_channels, out_channels, 3, 2) self.add_module(pan_in_block, pan_in_block_module) pan_out_block = "pan_out_layer{}".format(idx) pan_out_block_module = conv_block(out_channels, out_channels, 3, 1) self.add_module(pan_out_block, pan_out_block_module) self.pan_blocks.append([pan_in_block, pan_out_block]) self.top_blocks = top_blocks self.drop_block = drop_block def forward(self, x): """ Arguments: x (list[Tensor]): feature maps for each feature level. Returns: results (tuple[Tensor]): feature maps after FPN layers. They are ordered from highest resolution first. """ if type(x) is tuple: # for the case of VL backbone x, x_text = x[0], x[1] # print([v.shape for v in x]) swint_feature_c4 = None if self.return_swint_feature_before_fusion: # TODO: here we only return last single scale feature map before the backbone fusion, should be more flexible swint_feature_c4 = x[-2] if self.spp_block: last_inner = getattr(self, self.inner_blocks[-1])(self.spp_block(x[-1])) else: last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) results = [] results.append(getattr(self, self.layer_blocks[-1])(last_inner)) for feature, inner_block, layer_block in zip( x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1] ): if not inner_block: continue inner_lateral = getattr(self, inner_block)(feature) if inner_lateral.shape[-2:] != last_inner.shape[-2:]: # TODO: could also give size instead of inner_top_down = F.interpolate(last_inner, size=inner_lateral.shape[-2:], mode="nearest") else: inner_top_down = last_inner # TODO use size instead of scale to make it robust to different sizes # inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:], # mode='bilinear', align_corners=False) last_inner = inner_lateral + inner_top_down if self.drop_block and self.training: results.insert(0, getattr(self, layer_block)(self.drop_block(last_inner))) else: results.insert(0, getattr(self, layer_block)(last_inner)) if self.pan_blocks: pan_results = [] last_outer = results[0] pan_results.append(last_outer) for outer_top_down, pan_block in zip(results[1:], self.pan_blocks): if self.drop_block and self.training: pan_lateral = getattr(self, pan_block[0])(self.drop_block(last_outer)) else: pan_lateral = getattr(self, pan_block[0])(last_outer) last_outer = getattr(self, pan_block[1])(pan_lateral + outer_top_down) pan_results.append(last_outer) results = pan_results if isinstance(self.top_blocks, LastLevelP6P7): last_results = self.top_blocks(x[-1], results[-1]) results.extend(last_results) elif isinstance(self.top_blocks, LastLevelMaxPool): last_results = self.top_blocks(results[-1]) results.extend(last_results) try: return tuple(results), x_text, swint_feature_c4 except NameError as e: return tuple(results) class LastLevelMaxPool(nn.Module): def forward(self, x): return [F.max_pool2d(x, 1, 2, 0)] class LastLevelP6P7(nn.Module): """ This module is used in RetinaNet to generate extra layers, P6 and P7. """ def __init__(self, in_channels, out_channels): super(LastLevelP6P7, self).__init__() self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) for module in [self.p6, self.p7]: nn.init.kaiming_uniform_(module.weight, a=1) nn.init.constant_(module.bias, 0) self.use_P5 = in_channels == out_channels def forward(self, c5, p5): x = p5 if self.use_P5 else c5 p6 = self.p6(x) p7 = self.p7(F.relu(p6)) return [p6, p7] class SPPLayer(nn.Module): def __init__(self): super(SPPLayer, self).__init__() def forward(self, x): x_1 = x x_2 = F.max_pool2d(x, 5, stride=1, padding=2) x_3 = F.max_pool2d(x, 9, stride=1, padding=4) x_4 = F.max_pool2d(x, 13, stride=1, padding=6) out = torch.cat((x_1, x_2, x_3, x_4),dim=1) return out