import streamlit as st import time from multipage import MultiPage from transformers import pipeline import torch def app(): st.markdown('## Text Generation task') st.write('Write something and AI will continue the sentence ') st.markdown('## ') @st.cache(allow_output_mutation=True, suppress_st_warning =True, show_spinner=False) def get_model(): return pipeline('text-generation', model=model, do_sample=True, skip_special_tokens=True) col1, col2 = st.columns([2,1]) with col1: prompt= st.text_area('Your prompt here', '''Who is Elon Musk?''') with col2: select_model = st.radio( "Select the model to use:", ('OPT-125m', 'OPT-350m'), index = 1) if select_model == 'OPT-350m': model = 'facebook/opt-350m' elif select_model == 'OPT-125m': model = 'facebook/opt-125m' with st.spinner('Loading Model... (This may take a while)'): generator = get_model() st.success('Model loaded correctly!') with col1: gen = st.info('Generating text...') answer = generator(prompt, max_length=80, no_repeat_ngram_size=2, early_stopping=True, num_beams=8, skip_special_tokens=True) gen.empty() lst = answer[0]['generated_text'] t = st.empty() for i in range(len(lst)): t.markdown("#### %s..." % lst[0:i]) time.sleep(0.04)