PierreBrunelle's picture
Update app.py
0cc84ec verified
raw
history blame
6.27 kB
import gradio as gr
import pixeltable as pxt
import numpy as np
from datetime import datetime
from pixeltable.functions.huggingface import sentence_transformer
from pixeltable.functions import openai
import os
# Ensure OpenAI API key is set
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = input('Enter your OpenAI API key: ')
# Initialize Pixeltable
pxt.drop_dir('story_builder', force=True)
pxt.create_dir('story_builder')
# Create embedding function
@pxt.expr_udf
def embed_text(text: str) -> np.ndarray:
return sentence_transformer(text, model_id='all-MiniLM-L6-v2')
# Create a table to store story contributions
story_table = pxt.create_table(
'story_builder.contributions',
{
'contributor': pxt.StringType(),
'content': pxt.StringType(),
'timestamp': pxt.TimestampType(),
'cumulative_story': pxt.StringType()
}
)
# Add an embedding index to the content column
story_table.add_embedding_index('content', string_embed=embed_text)
@pxt.udf
def generate_summary(story: str) -> list[dict]:
system_msg = "You are an expert summarizer. Provide a concise summary of the given story, highlighting key plot points and themes."
user_msg = f"Story: {story}\n\nSummarize this story:"
return [
{'role': 'system', 'content': system_msg},
{'role': 'user', 'content': user_msg}
]
story_table['summary_prompt'] = generate_summary(story_table.cumulative_story)
story_table['summary_response'] = openai.chat_completions(
messages=story_table.summary_prompt,
model='gpt-3.5-turbo',
max_tokens=200
)
@pxt.udf
def generate_continuation(context: str) -> list[dict]:
system_msg = "You are a creative writer. Continue the story based on the given context. Write a paragraph that logically follow the provided content."
user_msg = f"Context: {context}\n\nContinue the story:"
return [
{'role': 'system', 'content': system_msg},
{'role': 'user', 'content': user_msg}
]
story_table['continuation_prompt'] = generate_continuation(story_table.cumulative_story)
story_table['continuation_response'] = openai.chat_completions(
messages=story_table.continuation_prompt,
model='gpt-3.5-turbo',
max_tokens=50
)
# Functions for Gradio interface
def add_contribution(contributor, content):
current_story = get_current_story()
new_cumulative_story = current_story + " " + content if current_story else content
story_table.insert([{
'contributor': contributor,
'content': content,
'timestamp': datetime.now(),
'cumulative_story': new_cumulative_story
}])
return "Contribution added successfully!", new_cumulative_story
def get_similar_parts(query, num_results=5):
sim = story_table.content.similarity(query)
results = story_table.order_by(sim, asc=False).limit(num_results).select(story_table.content, story_table.contributor).collect()
return results.to_pandas()
def generate_next_part():
continuation = story_table.select(continuation=story_table.continuation_response.choices[0].message.content).tail(1)['continuation'][0]
return continuation
def summarize_story():
summary = story_table.select(summary=story_table.summary_response.choices[0].message.content).tail(1)['summary'][0]
return summary
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.HTML(
"""
<div style="text-align: left; margin-bottom: 1rem;">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
</div>
"""
)
gr.Markdown(
"""
# πŸ“š Collaborative Story Builder
Welcome to the Collaborative Story Builder! This app allows multiple users to contribute to a story,
building it incrementally. Pixeltable manages the data, enables similarity search, and helps generate
continuations and summaries.
"""
)
with gr.Tabs():
with gr.TabItem("Contribute"):
with gr.Row():
with gr.Column(scale=2):
contributor = gr.Textbox(label="Your Nickname")
content = gr.Textbox(label="Your Contribution", lines=5)
submit_btn = gr.Button("Submit Contribution", variant="primary")
with gr.Row():
with gr.Column():
generate_btn = gr.Button("Generate Next Part", variant="primary")
generated_part = gr.Textbox(label="Generated Continuation", lines=5)
with gr.Column():
summarize_btn = gr.Button("Summarize Story", variant="primary")
summary = gr.Textbox(label="Story Summary", lines=5)
with gr.TabItem("Search Past Contributions"):
with gr.Row():
with gr.Column():
search_query = gr.Textbox(label="Search Current Contributions")
num_results = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Results")
search_btn = gr.Button("Search", variant="secondary")
search_results = gr.Dataframe(
headers=["Content", "Contributor"],
label="Similar Parts"
)
submit_btn.click(add_contribution, inputs=[contributor, content])
search_btn.click(get_similar_parts, inputs=[search_query, num_results], outputs=[search_results])
generate_btn.click(generate_next_part, outputs=[generated_part])
summarize_btn.click(summarize_story, outputs=[summary])
gr.HTML(
"""
<div style="text-align: center; margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #ccc;">
<p style="margin: 0; color: #666; font-size: 0.8em;">
Powered by <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none;">Pixeltable</a>
| <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #666; text-decoration: none;">GitHub</a>
</p>
</div>
"""
)
if __name__ == "__main__":
demo.launch()