PierreBrunelle's picture
Update app.py
12ae97f verified
raw
history blame
4.86 kB
import gradio as gr
import pandas as pd
import pixeltable as pxt
from pixeltable.iterators import DocumentSplitter
import numpy as np
from pixeltable.functions.huggingface import sentence_transformer
from pixeltable.functions import openai
import os
"""## Store OpenAI API Key"""
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
"""Pixeltable Set up"""
# Ensure a clean slate for the demo
pxt.drop_dir('rag_demo', force=True)
pxt.create_dir('rag_demo')
# Set up embedding function
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
# Create prompt function
@pxt.udf
def create_prompt(top_k_list: list[dict], question: str) -> str:
concat_top_k = '\n\n'.join(
elt['text'] for elt in reversed(top_k_list)
)
return f'''
PASSAGES:
{concat_top_k}
QUESTION:
{question}'''
# Gradio Application
def process_files(ground_truth_file, pdf_files):
# Ensure a clean slate for the demo by removing and recreating the 'rag_demo' directory
pxt.drop_dir('rag_demo', force=True)
pxt.create_dir('rag_demo')
# Process the ground truth file, which contains questions and correct answers
# Import as CSV or Excel depending on the file extension
if ground_truth_file.name.endswith('.csv'):
queries_t = pxt.io.import_csv('rag_demo.queries', ground_truth_file.name)
else:
queries_t = pxt.io.import_excel('rag_demo.queries', ground_truth_file.name)
# Create a table to store the uploaded PDF documents
documents_t = pxt.create_table(
'rag_demo.documents',
{'document': pxt.DocumentType()}
)
# Insert the PDF files into the documents table
documents_t.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf'))
# Create a view that splits the documents into smaller chunks
chunks_t = pxt.create_view(
'rag_demo.chunks',
documents_t,
iterator=DocumentSplitter.create(
document=documents_t.document,
separators='token_limit',
limit=300
)
)
# Add an embedding index to the chunks for similarity search
chunks_t.add_embedding_index('text', string_embed=e5_embed)
# Define a query function to retrieve the top-k most similar chunks for a given question
@chunks_t.query
def top_k(query_text: str):
sim = chunks_t.text.similarity(query_text)
return (
chunks_t.order_by(sim, asc=False)
.select(chunks_t.text, sim=sim)
.limit(5)
)
# Add computed columns to the queries table for context retrieval and prompt creation
queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
queries_t['prompt'] = create_prompt(
queries_t.question_context, queries_t.Question
)
# Prepare messages for the OpenAI API, including system instructions and user prompt
messages = [
{
'role': 'system',
'content': 'Please read the following passages and answer the question based on their contents.'
},
{
'role': 'user',
'content': queries_t.prompt
}
]
# Add OpenAI response column
queries_t['response'] = openai.chat_completions(
model='gpt-4o-mini-2024-07-18', messages=messages
)
# Extract the answer text from the API response
queries_t['answer'] = queries_t.response.choices[0].message.content.astype(pxt.StringType())
# Prepare the output dataframe with questions, correct answers, and model-generated answers
df_output = queries_t.select(queries_t.Question, queries_t.correct_answer, queries_t.answer).collect().to_pandas()
try:
# Return the output dataframe for display
return df_output
except Exception as e:
return f"An error occurred: {str(e)}", None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# RAG Demo App")
# File upload components for ground truth and PDF documents
with gr.Row():
ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)", file_count="single")
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
# Button to trigger file processing
process_button = gr.Button("Process Files and Generate Outputs")
# Output component to display the results
df_output = gr.DataFrame(label="Pixeltable Table")
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=df_output)
#question_input = gr.Textbox(label="Enter your question")
#query_button = gr.Button("Query LLM")
#query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
if __name__ == "__main__":
demo.launch()