PierreBrunelle commited on
Commit
ef89dbb
·
verified ·
1 Parent(s): 74672af

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +155 -0
app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import pixeltable as pxt
4
+ from pixeltable.iterators import DocumentSplitter
5
+ import numpy as np
6
+ from pixeltable.functions.huggingface import sentence_transformer
7
+ from pixeltable.functions import openai
8
+ import os
9
+
10
+ # Ensure a clean slate for the demo
11
+ pxt.drop_dir('rag_demo', force=True)
12
+ pxt.create_dir('rag_demo')
13
+
14
+ # Set up embedding function
15
+ @pxt.expr_udf
16
+ def e5_embed(text: str) -> np.ndarray:
17
+ return sentence_transformer(text, model_id='intfloat/e5-large-v2')
18
+
19
+ # Create prompt function
20
+ @pxt.udf
21
+ def create_prompt(top_k_list: list[dict], question: str) -> str:
22
+ concat_top_k = '\n\n'.join(
23
+ elt['text'] for elt in reversed(top_k_list)
24
+ )
25
+ return f'''
26
+ PASSAGES:
27
+
28
+ {concat_top_k}
29
+
30
+ QUESTION:
31
+
32
+ {question}'''
33
+
34
+ def process_files(ground_truth_file, pdf_files):
35
+ # Process ground truth file
36
+ if ground_truth_file.name.endswith('.csv'):
37
+ df = pd.read_csv(ground_truth_file.name)
38
+ else:
39
+ df = pd.read_excel(ground_truth_file.name)
40
+
41
+ queries_t = pxt.create_table('rag_demo.queries', df)
42
+
43
+ # Process PDF files
44
+ documents_t = pxt.create_table(
45
+ 'rag_demo.documents',
46
+ {'document': pxt.DocumentType()}
47
+ )
48
+
49
+ for pdf_file in pdf_files:
50
+ documents_t.insert({'document': pdf_file.name})
51
+
52
+ # Create chunks view
53
+ chunks_t = pxt.create_view(
54
+ 'rag_demo.chunks',
55
+ documents_t,
56
+ iterator=DocumentSplitter.create(
57
+ document=documents_t.document,
58
+ separators='token_limit',
59
+ limit=300
60
+ )
61
+ )
62
+
63
+ # Add embedding index
64
+ chunks_t.add_embedding_index('text', string_embed=e5_embed)
65
+
66
+ # Create top_k query
67
+ @chunks_t.query
68
+ def top_k(query_text: str):
69
+ sim = chunks_t.text.similarity(query_text)
70
+ return (
71
+ chunks_t.order_by(sim, asc=False)
72
+ .select(chunks_t.text, sim=sim)
73
+ .limit(5)
74
+ )
75
+
76
+ # Add computed columns to queries_t
77
+ queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
78
+ queries_t['prompt'] = create_prompt(
79
+ queries_t.question_context, queries_t.Question
80
+ )
81
+
82
+ # Prepare messages for OpenAI
83
+ messages = [
84
+ {
85
+ 'role': 'system',
86
+ 'content': 'Please read the following passages and answer the question based on their contents.'
87
+ },
88
+ {
89
+ 'role': 'user',
90
+ 'content': queries_t.prompt
91
+ }
92
+ ]
93
+
94
+ # Add OpenAI response column
95
+ queries_t['response'] = openai.chat_completions(
96
+ model='gpt-4-0125-preview', messages=messages
97
+ )
98
+ queries_t['answer'] = queries_t.response.choices[0].message.content
99
+
100
+ return "Files processed successfully!"
101
+
102
+ def query_llm(question):
103
+ queries_t = pxt.get_table('rag_demo.queries')
104
+ chunks_t = pxt.get_table('rag_demo.chunks')
105
+
106
+ # Perform top-k lookup
107
+ context = chunks_t.top_k(question).collect()
108
+
109
+ # Create prompt
110
+ prompt = create_prompt(context, question)
111
+
112
+ # Prepare messages for OpenAI
113
+ messages = [
114
+ {
115
+ 'role': 'system',
116
+ 'content': 'Please read the following passages and answer the question based on their contents.'
117
+ },
118
+ {
119
+ 'role': 'user',
120
+ 'content': prompt
121
+ }
122
+ ]
123
+
124
+ # Get LLM response
125
+ response = openai.chat_completions(model='gpt-4-0125-preview', messages=messages)
126
+ answer = response.choices[0].message.content
127
+
128
+ # Add new row to queries_t
129
+ new_row = {'Question': question, 'answer': answer}
130
+ queries_t.insert([new_row])
131
+
132
+ # Return updated dataframe
133
+ return queries_t.select(queries_t.Question, queries_t.answer).collect()
134
+
135
+ # Gradio interface
136
+ with gr.Blocks() as demo:
137
+ gr.Markdown("# RAG Demo App")
138
+
139
+ with gr.Row():
140
+ ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)")
141
+ pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
142
+
143
+ process_button = gr.Button("Process Files")
144
+ process_output = gr.Textbox(label="Processing Output")
145
+
146
+ question_input = gr.Textbox(label="Enter your question")
147
+ query_button = gr.Button("Query LLM")
148
+
149
+ output_dataframe = gr.Dataframe(label="LLM Outputs")
150
+
151
+ process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output)
152
+ query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
153
+
154
+ if __name__ == "__main__":
155
+ demo.launch()