PierreBrunelle
commited on
Commit
•
fb3b5a9
1
Parent(s):
650714a
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import pixeltable as pxt
|
@@ -12,6 +24,8 @@ import os
|
|
12 |
if 'OPENAI_API_KEY' not in os.environ:
|
13 |
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
|
14 |
|
|
|
|
|
15 |
# Ensure a clean slate for the demo
|
16 |
pxt.drop_dir('rag_demo', force=True)
|
17 |
pxt.create_dir('rag_demo')
|
@@ -36,25 +50,25 @@ def create_prompt(top_k_list: list[dict], question: str) -> str:
|
|
36 |
|
37 |
{question}'''
|
38 |
|
|
|
|
|
39 |
def process_files(ground_truth_file, pdf_files):
|
40 |
# Process ground truth file
|
41 |
if ground_truth_file.name.endswith('.csv'):
|
42 |
-
|
43 |
else:
|
44 |
-
|
45 |
-
|
46 |
-
queries_t = pxt.create_table('rag_demo.queries', df)
|
47 |
|
48 |
# Process PDF files
|
49 |
documents_t = pxt.create_table(
|
50 |
'rag_demo.documents',
|
51 |
{'document': pxt.DocumentType()}
|
52 |
)
|
53 |
-
|
54 |
for pdf_file in pdf_files:
|
55 |
documents_t.insert({'document': pdf_file.name})
|
56 |
|
57 |
-
|
58 |
chunks_t = pxt.create_view(
|
59 |
'rag_demo.chunks',
|
60 |
documents_t,
|
@@ -71,12 +85,12 @@ def process_files(ground_truth_file, pdf_files):
|
|
71 |
# Create top_k query
|
72 |
@chunks_t.query
|
73 |
def top_k(query_text: str):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
# Add computed columns to queries_t
|
82 |
queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
|
@@ -96,6 +110,12 @@ def process_files(ground_truth_file, pdf_files):
|
|
96 |
}
|
97 |
]
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
# Add OpenAI response column
|
100 |
queries_t['response'] = openai.chat_completions(
|
101 |
model='gpt-4-0125-preview', messages=messages
|
@@ -104,10 +124,6 @@ def process_files(ground_truth_file, pdf_files):
|
|
104 |
|
105 |
return "Files processed successfully!"
|
106 |
|
107 |
-
def query_llm(question):
|
108 |
-
queries_t = pxt.get_table('rag_demo.queries')
|
109 |
-
chunks_t = pxt.get_table('rag_demo.chunks')
|
110 |
-
|
111 |
# Perform top-k lookup
|
112 |
context = chunks_t.top_k(question).collect()
|
113 |
|
@@ -140,21 +156,22 @@ def query_llm(question):
|
|
140 |
# Gradio interface
|
141 |
with gr.Blocks() as demo:
|
142 |
gr.Markdown("# RAG Demo App")
|
143 |
-
|
144 |
with gr.Row():
|
145 |
-
ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)")
|
146 |
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
|
147 |
-
|
148 |
process_button = gr.Button("Process Files")
|
149 |
process_output = gr.Textbox(label="Processing Output")
|
150 |
-
|
151 |
question_input = gr.Textbox(label="Enter your question")
|
152 |
query_button = gr.Button("Query LLM")
|
153 |
-
|
154 |
output_dataframe = gr.Dataframe(label="LLM Outputs")
|
155 |
|
156 |
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output)
|
157 |
query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
-
demo.launch()
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""LLM Comparison
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/156SKaX3DY6jwOhcpwZVM5AiLscOAbNNJ
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
# %pip install -qU pixeltable gradio sentence-transformers tiktoken openai openpyxl
|
12 |
+
|
13 |
import gradio as gr
|
14 |
import pandas as pd
|
15 |
import pixeltable as pxt
|
|
|
24 |
if 'OPENAI_API_KEY' not in os.environ:
|
25 |
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:')
|
26 |
|
27 |
+
"""Pixeltable Set up"""
|
28 |
+
|
29 |
# Ensure a clean slate for the demo
|
30 |
pxt.drop_dir('rag_demo', force=True)
|
31 |
pxt.create_dir('rag_demo')
|
|
|
50 |
|
51 |
{question}'''
|
52 |
|
53 |
+
"""Gradio Application"""
|
54 |
+
|
55 |
def process_files(ground_truth_file, pdf_files):
|
56 |
# Process ground truth file
|
57 |
if ground_truth_file.name.endswith('.csv'):
|
58 |
+
queries_t = pxt.io.import_csv(rag_demo.queries, ground_truth_file.name)
|
59 |
else:
|
60 |
+
queries_t = pxt.io.import_excel(rag_demo.queries, ground_truth_file.name)
|
|
|
|
|
61 |
|
62 |
# Process PDF files
|
63 |
documents_t = pxt.create_table(
|
64 |
'rag_demo.documents',
|
65 |
{'document': pxt.DocumentType()}
|
66 |
)
|
67 |
+
|
68 |
for pdf_file in pdf_files:
|
69 |
documents_t.insert({'document': pdf_file.name})
|
70 |
|
71 |
+
# Create chunks view
|
72 |
chunks_t = pxt.create_view(
|
73 |
'rag_demo.chunks',
|
74 |
documents_t,
|
|
|
85 |
# Create top_k query
|
86 |
@chunks_t.query
|
87 |
def top_k(query_text: str):
|
88 |
+
sim = chunks_t.text.similarity(query_text)
|
89 |
+
return (
|
90 |
+
chunks_t.order_by(sim, asc=False)
|
91 |
+
.select(chunks_t.text, sim=sim)
|
92 |
+
.limit(5)
|
93 |
+
)
|
94 |
|
95 |
# Add computed columns to queries_t
|
96 |
queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
|
|
|
110 |
}
|
111 |
]
|
112 |
|
113 |
+
def query_llm(question, ground_truth_file, pdf_files):
|
114 |
+
queries_t = pxt.get_table('rag_demo.queries')
|
115 |
+
chunks_t = pxt.get_table('rag_demo.chunks')
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
# Add OpenAI response column
|
120 |
queries_t['response'] = openai.chat_completions(
|
121 |
model='gpt-4-0125-preview', messages=messages
|
|
|
124 |
|
125 |
return "Files processed successfully!"
|
126 |
|
|
|
|
|
|
|
|
|
127 |
# Perform top-k lookup
|
128 |
context = chunks_t.top_k(question).collect()
|
129 |
|
|
|
156 |
# Gradio interface
|
157 |
with gr.Blocks() as demo:
|
158 |
gr.Markdown("# RAG Demo App")
|
159 |
+
|
160 |
with gr.Row():
|
161 |
+
ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)", file_count="single")
|
162 |
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
|
163 |
+
|
164 |
process_button = gr.Button("Process Files")
|
165 |
process_output = gr.Textbox(label="Processing Output")
|
166 |
+
|
167 |
question_input = gr.Textbox(label="Enter your question")
|
168 |
query_button = gr.Button("Query LLM")
|
169 |
+
|
170 |
output_dataframe = gr.Dataframe(label="LLM Outputs")
|
171 |
|
172 |
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output)
|
173 |
query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
+
demo.launch()
|
177 |
+
|