import gradio as gr import pandas as pd import pixeltable as pxt from pixeltable.iterators import DocumentSplitter import numpy as np from pixeltable.functions.huggingface import sentence_transformer from pixeltable.functions import openai import os """## Store OpenAI API Key""" if 'OPENAI_API_KEY' not in os.environ: os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:') """Pixeltable Set up""" # Ensure a clean slate for the demo pxt.drop_dir('rag_demo', force=True) pxt.create_dir('rag_demo') # Set up embedding function @pxt.expr_udf def e5_embed(text: str) -> np.ndarray: return sentence_transformer(text, model_id='intfloat/e5-large-v2') # Create prompt function @pxt.udf def create_prompt(top_k_list: list[dict], question: str) -> str: concat_top_k = '\n\n'.join( elt['text'] for elt in reversed(top_k_list) ) return f''' PASSAGES: {concat_top_k} QUESTION: {question}''' # Gradio Application def process_files(ground_truth_file, pdf_files): # Ensure a clean slate for the demo by removing and recreating the 'rag_demo' directory pxt.drop_dir('rag_demo', force=True) pxt.create_dir('rag_demo') # Process the ground truth file, which contains questions and correct answers # Import as CSV or Excel depending on the file extension if ground_truth_file.name.endswith('.csv'): queries_t = pxt.io.import_csv('rag_demo.queries', ground_truth_file.name) else: queries_t = pxt.io.import_excel('rag_demo.queries', ground_truth_file.name) # Create a table to store the uploaded PDF documents documents_t = pxt.create_table( 'rag_demo.documents', {'document': pxt.DocumentType()} ) # Insert the PDF files into the documents table documents_t.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf')) # Create a view that splits the documents into smaller chunks chunks_t = pxt.create_view( 'rag_demo.chunks', documents_t, iterator=DocumentSplitter.create( document=documents_t.document, separators='token_limit', limit=300 ) ) # Add an embedding index to the chunks for similarity search chunks_t.add_embedding_index('text', string_embed=e5_embed) # Define a query function to retrieve the top-k most similar chunks for a given question @chunks_t.query def top_k(query_text: str): sim = chunks_t.text.similarity(query_text) return ( chunks_t.order_by(sim, asc=False) .select(chunks_t.text, sim=sim) .limit(5) ) # Add computed columns to the queries table for context retrieval and prompt creation queries_t['question_context'] = chunks_t.top_k(queries_t.Question) queries_t['prompt'] = create_prompt( queries_t.question_context, queries_t.Question ) # Prepare messages for the OpenAI API, including system instructions and user prompt messages = [ { 'role': 'system', 'content': 'Please read the following passages and answer the question based on their contents.' }, { 'role': 'user', 'content': queries_t.prompt } ] # Add OpenAI response column queries_t['response'] = openai.chat_completions( model='gpt-4o-mini-2024-07-18', messages=messages ) # Extract the answer text from the API response queries_t['answer'] = queries_t.response.choices[0].message.content.astype(pxt.StringType()) # Prepare the output dataframe with questions, correct answers, and model-generated answers df_output = queries_t.select(queries_t.Question, queries_t.correct_answer, queries_t.answer).collect().to_pandas() try: # Return the output dataframe for display return df_output except Exception as e: return f"An error occurred: {str(e)}", None # Gradio interface with gr.Blocks() as demo: gr.Markdown("# RAG Demo App") # File upload components for ground truth and PDF documents with gr.Row(): ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)", file_count="single") pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple") # Button to trigger file processing process_button = gr.Button("Process Files and Generate Outputs") # Output component to display the results df_output = gr.DataFrame(label="Pixeltable Table") process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=df_output) #question_input = gr.Textbox(label="Enter your question") #query_button = gr.Button("Query LLM") #query_button.click(query_llm, inputs=question_input, outputs=output_dataframe) if __name__ == "__main__": demo.launch()