import gradio as gr import pandas as pd import pixeltable as pxt from pixeltable.iterators import DocumentSplitter import numpy as np from pixeltable.functions.huggingface import sentence_transformer from pixeltable.functions import openai import os """## Store OpenAI API Key""" if 'OPENAI_API_KEY' not in os.environ: os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:') # Ensure a clean slate for the demo pxt.drop_dir('rag_demo', force=True) pxt.create_dir('rag_demo') # Set up embedding function @pxt.expr_udf def e5_embed(text: str) -> np.ndarray: return sentence_transformer(text, model_id='intfloat/e5-large-v2') # Create prompt function @pxt.udf def create_prompt(top_k_list: list[dict], question: str) -> str: concat_top_k = '\n\n'.join( elt['text'] for elt in reversed(top_k_list) ) return f''' PASSAGES: {concat_top_k} QUESTION: {question}''' def process_files(ground_truth_file, pdf_files): # Process ground truth file if ground_truth_file.name.endswith('.csv'): df = pd.read_csv(ground_truth_file.name) else: df = pd.read_excel(ground_truth_file.name) queries_t = pxt.create_table('rag_demo.queries', df) # Process PDF files documents_t = pxt.create_table( 'rag_demo.documents', {'document': pxt.DocumentType()} ) for pdf_file in pdf_files: documents_t.insert({'document': pdf_file.name}) # Create chunks view chunks_t = pxt.create_view( 'rag_demo.chunks', documents_t, iterator=DocumentSplitter.create( document=documents_t.document, separators='token_limit', limit=300 ) ) # Add embedding index chunks_t.add_embedding_index('text', string_embed=e5_embed) # Create top_k query @chunks_t.query def top_k(query_text: str): sim = chunks_t.text.similarity(query_text) return ( chunks_t.order_by(sim, asc=False) .select(chunks_t.text, sim=sim) .limit(5) ) # Add computed columns to queries_t queries_t['question_context'] = chunks_t.top_k(queries_t.Question) queries_t['prompt'] = create_prompt( queries_t.question_context, queries_t.Question ) # Prepare messages for OpenAI messages = [ { 'role': 'system', 'content': 'Please read the following passages and answer the question based on their contents.' }, { 'role': 'user', 'content': queries_t.prompt } ] # Add OpenAI response column queries_t['response'] = openai.chat_completions( model='gpt-4-0125-preview', messages=messages ) queries_t['answer'] = queries_t.response.choices[0].message.content return "Files processed successfully!" def query_llm(question): queries_t = pxt.get_table('rag_demo.queries') chunks_t = pxt.get_table('rag_demo.chunks') # Perform top-k lookup context = chunks_t.top_k(question).collect() # Create prompt prompt = create_prompt(context, question) # Prepare messages for OpenAI messages = [ { 'role': 'system', 'content': 'Please read the following passages and answer the question based on their contents.' }, { 'role': 'user', 'content': prompt } ] # Get LLM response response = openai.chat_completions(model='gpt-4-0125-preview', messages=messages) answer = response.choices[0].message.content # Add new row to queries_t new_row = {'Question': question, 'answer': answer} queries_t.insert([new_row]) # Return updated dataframe return queries_t.select(queries_t.Question, queries_t.answer).collect() # Gradio interface with gr.Blocks() as demo: gr.Markdown("# RAG Demo App") with gr.Row(): ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)") pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple") process_button = gr.Button("Process Files") process_output = gr.Textbox(label="Processing Output") question_input = gr.Textbox(label="Enter your question") query_button = gr.Button("Query LLM") output_dataframe = gr.Dataframe(label="LLM Outputs") process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output) query_button.click(query_llm, inputs=question_input, outputs=output_dataframe) if __name__ == "__main__": demo.launch()