File size: 14,132 Bytes
cbf16d4
 
 
 
 
57710db
cbf16d4
 
 
7037bb1
 
cbf16d4
 
 
 
57710db
cbf16d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57710db
d070c8f
cbf16d4
 
 
57710db
 
 
 
 
 
7264ec5
d070c8f
57710db
 
7037bb1
cbf16d4
57710db
cbf16d4
 
 
 
 
 
 
 
d070c8f
cbf16d4
 
 
 
 
 
 
 
 
 
 
7037bb1
 
 
 
d070c8f
7037bb1
 
cbf16d4
 
57710db
 
 
cbf16d4
 
57710db
 
cbf16d4
57710db
 
 
 
 
 
 
cbf16d4
57710db
cbf16d4
 
 
 
 
 
57710db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d070c8f
57710db
 
 
 
cbf16d4
 
 
 
 
 
 
 
57710db
 
 
 
 
cbf16d4
 
57710db
cbf16d4
57710db
 
 
 
8d39277
57710db
 
 
 
 
 
 
 
 
 
 
 
cbf16d4
7037bb1
 
57710db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693d55a
 
 
 
 
d070c8f
693d55a
 
 
57710db
7037bb1
57710db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d070c8f
57710db
 
 
 
 
 
7037bb1
693d55a
 
 
62421f1
693d55a
 
 
 
 
 
 
 
 
 
62421f1
57710db
 
 
 
 
 
35be9b4
57710db
 
 
 
 
35be9b4
57710db
 
 
 
d070c8f
57710db
 
 
 
 
 
 
 
 
 
 
7037bb1
 
d070c8f
57710db
7037bb1
57710db
cbf16d4
 
57710db
cbf16d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
import pixeltable as pxt
from pixeltable.functions.mistralai import chat_completions
from datetime import datetime
from textblob import TextBlob
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import os
import getpass

# Ensure necessary NLTK data is downloaded
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('punkt_tab', quiet=True)

# Set up Mistral API key
if 'MISTRAL_API_KEY' not in os.environ:
    os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')

# Define UDFs
@pxt.udf
def get_sentiment_score(text: str) -> float:
    return TextBlob(text).sentiment.polarity

@pxt.udf
def extract_keywords(text: str, num_keywords: int = 5) -> list:
    stop_words = set(stopwords.words('english'))
    words = word_tokenize(text.lower())
    keywords = [word for word in words if word.isalnum() and word not in stop_words]
    return sorted(set(keywords), key=keywords.count, reverse=True)[:num_keywords]

@pxt.udf
def calculate_readability(text: str) -> float:
    words = len(re.findall(r'\w+', text))
    sentences = len(re.findall(r'\w+[.!?]', text)) or 1
    average_words_per_sentence = words / sentences
    return 206.835 - 1.015 * average_words_per_sentence

# Function to run inference and analysis
def run_inference_and_analysis(task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt):
    # Initialize Pixeltable
    pxt.drop_table('mistral_prompts', ignore_errors=True)
    t = pxt.create_table('mistral_prompts', {
        'task': pxt.String,
        'system': pxt.String,
        'input_text': pxt.String,
        'timestamp': pxt.Timestamp,
        'temperature': pxt.Float,
        'top_p': pxt.Float,
        'max_tokens': pxt.Int,
        'stop': pxt.String,
        'random_seed': pxt.Int,
        'safe_prompt': pxt.Bool
    })
    
    # Insert new row into Pixeltable
    t.insert([{
        'task': task,
        'system': system_prompt,
        'input_text': input_text,
        'timestamp': datetime.now(),
        'temperature': temperature,
        'top_p': top_p,
        'max_tokens': max_tokens,
        'stop': stop,
        'random_seed': random_seed,
        'safe_prompt': safe_prompt
    }])
    
    # Define messages for chat completion
    msgs = [
        {'role': 'system', 'content': t.system},
        {'role': 'user', 'content': t.input_text}
    ]

    common_params = {
        'messages': msgs,
        'temperature': temperature,
        'top_p': top_p,
        'max_tokens': max_tokens if max_tokens is not None else 300,
        'stop': stop.split(',') if stop else None,
        'random_seed': random_seed,
        'safe_prompt': safe_prompt
    }
    
    # Add computed columns for model responses and analysis
    t.add_computed_column(open_mistral_nemo=chat_completions(model='open-mistral-nemo', **common_params))
    t.add_computed_column(mistral_medium=chat_completions(model='mistral-medium', **common_params))
    
    # Extract responses
    t.add_computed_column(omn_response=t.open_mistral_nemo.choices[0].message.content.astype(pxt.String))
    t.add_computed_column(ml_response=t.mistral_medium.choices[0].message.content.astype(pxt.String))
    
    # Add computed columns for analysis
    t.add_computed_column(large_sentiment_score=get_sentiment_score(t.ml_response))
    t.add_computed_column(large_keywords=extract_keywords(t.ml_response))
    t.add_computed_column(large_readability_score=calculate_readability(t.ml_response))
    t.add_computed_column(open_sentiment_score=get_sentiment_score(t.omn_response))
    t.add_computed_column(open_keywords=extract_keywords(t.omn_response))
    t.add_computed_column(open_readability_score=calculate_readability(t.omn_response))
    
    # Retrieve results
    results = t.select(
        t.omn_response, t.ml_response,
        t.large_sentiment_score, t.open_sentiment_score,
        t.large_keywords, t.open_keywords,
        t.large_readability_score, t.open_readability_score
    ).tail(1)

    history = t.select(t.timestamp, t.task, t.system, t.input_text).order_by(t.timestamp, asc=False).collect().to_pandas()
    responses = t.select(t.timestamp, t.omn_response, t.ml_response).order_by(t.timestamp, asc=False).collect().to_pandas()
    analysis = t.select(
        t.timestamp,
        t.open_sentiment_score,
        t.large_sentiment_score,
        t.open_keywords,
        t.large_keywords,
        t.open_readability_score,
        t.large_readability_score
    ).order_by(t.timestamp, asc=False).collect().to_pandas()
    params = t.select(
        t.timestamp,
        t.temperature,
        t.top_p,
        t.max_tokens,
        t.stop,
        t.random_seed,
        t.safe_prompt
    ).order_by(t.timestamp, asc=False).collect().to_pandas()
       
    return (
        results['omn_response'][0],
        results['ml_response'][0],
        results['large_sentiment_score'][0],
        results['open_sentiment_score'][0],
        results['large_keywords'][0],
        results['open_keywords'][0],
        results['large_readability_score'][0],
        results['open_readability_score'][0],
        history,
        responses,
        analysis,
        params
    )

# Gradio interface
def gradio_interface():
    with gr.Blocks(theme=gr.themes.Base(), title="Prompt Engineering and LLM Studio") as demo:
        gr.HTML(
            """
            <div style="margin-bottom: 20px;">
                <img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/resources/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
            </div>
            """
        ) 
        gr.Markdown(
            """
            # Prompt Engineering and LLM Studio
            This application demonstrates how [Pixeltable](https://github.com/pixeltable/pixeltable) can be used for rapid and incremental prompt engineering 
            and model comparison workflows. It showcases Pixeltable's ability to directly store, version, index, 
            and transform data while providing an interactive interface to experiment with different prompts and models.
            Remember, effective prompt engineering often requires experimentation and iteration. Use this tool to systematically improve your prompts and understand how different inputs and parameters affect the LLM outputs.
            """
        )

        with gr.Row():
            with gr.Column():
                with gr.Accordion("What does it do?", open=False):
                    gr.Markdown(
                        """
                        1. **Data Organization**: Pixeltable uses tables and views to organize data, similar to traditional databases but with enhanced capabilities for AI workflows.
                        2. **Computed Columns**: These are dynamically generated columns based on expressions applied to columns.
                        3. **Data Storage**: All prompts, responses, and analysis results are stored in Pixeltable tables.
                        4. **Versioning**: Every operations are automatically versioned, allowing you to track changes over time.
                        5. **UDFs**: Sentiment scores, keywords, and readability scores are computed dynamically.
                        6. **Querying**: The history and analysis tabs leverage Pixeltable's querying capabilities to display results.
                        """
                    )
            
            with gr.Column():
                with gr.Accordion("How does it work?", open=False):
                    gr.Markdown(
                        """
                        1. **Define your task**: This helps you keep track of different experiments. 
                        2. **Set up your prompt**: Enter a system prompt in the "System Prompt" field. Write your specific input or question in the "Input Text" field
                        3. **Adjust parameters (optional)**: Adjust temperature, top_p, token limits, etc., to control the model's output.
                        4. **Run the analysis**: Click the "Run Inference and Analysis" button.
                        5. **Review the results**: Compare the responses from both models and exmaine the scores.
                        6. **Iterate and refine**: Based on the results, refine your prompt or adjust parameters.
                        """
                    )

        with gr.Row():
            with gr.Column():
                task = gr.Textbox(label="Task (Arbitrary Category)")
                system_prompt = gr.Textbox(label="System Prompt")
                input_text = gr.Textbox(label="Input Text")

                with gr.Accordion("Advanced Settings", open=False):
                    temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature")
                    top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Top P")
                    max_tokens = gr.Number(label="Max Tokens", value=300)
                    stop = gr.Textbox(label="Stop Sequences (comma-separated)")
                    random_seed = gr.Number(label="Random Seed", value=None)
                    safe_prompt = gr.Checkbox(label="Safe Prompt", value=False)

                submit_btn = gr.Button("Run Inference and Analysis")

                with gr.Tabs():
                    with gr.Tab("Prompt Input"):
                        history = gr.Dataframe(
                            headers=["Task", "System Prompt", "Input Text", "Timestamp"],
                            wrap=True
                        )
                    
                    with gr.Tab("Model Responses"):
                        responses = gr.Dataframe(
                            headers=["Timestamp", "Open-Mistral-Nemo Response", "Mistral-Medium Response"],
                            wrap=True
                        )
                    
                    with gr.Tab("Analysis Results"):
                        analysis = gr.Dataframe(
                            headers=[
                                "Timestamp",
                                "Open-Mistral-Nemo Sentiment",
                                "Mistral-Medium Sentiment",
                                "Open-Mistral-Nemo Keywords",
                                "Mistral-Medium Keywords",
                                "Open-Mistral-Nemo Readability",
                                "Mistral-Medium Readability"
                            ],
                            wrap=True
                        )
                    
                    with gr.Tab("Model Parameters"):
                        params = gr.Dataframe(
                            headers=[
                                "Timestamp",
                                "Temperature",
                                "Top P",
                                "Max Tokens",
                                "Min Tokens",
                                "Stop Sequences",
                                "Random Seed",
                                "Safe Prompt"
                            ],
                            wrap=True
                        )
            
            with gr.Column():
                omn_response = gr.Textbox(label="Open-Mistral-Nemo Response")
                ml_response = gr.Textbox(label="Mistral-Medium Response")
                
                with gr.Row():
                    large_sentiment = gr.Number(label="Mistral-Medium Sentiment")
                    open_sentiment = gr.Number(label="Open-Mistral-Nemo Sentiment")
                
                with gr.Row():
                    large_keywords = gr.Textbox(label="Mistral-Medium Keywords")
                    open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords")
                
                with gr.Row():
                    large_readability = gr.Number(label="Mistral-Medium Readability")
                    open_readability = gr.Number(label="Open-Mistral-Nemo Readability")

        # Define the examples
        examples = [
            # Example 1: Sentiment Analysis
            ["Sentiment Analysis", 
            "You are an AI trained to analyze the sentiment of text. Provide a detailed analysis of the emotional tone, highlighting key phrases that indicate sentiment.",
            "The new restaurant downtown exceeded all my expectations. The food was exquisite, the service impeccable, and the ambiance was perfect for a romantic evening. I can't wait to go back!",
            0.3, 0.95, 200, 3, None, False],
            
            # Example 2: Creative Writing
            ["Story Generation",
            "You are a creative writer. Generate a short, engaging story based on the given prompt. Include vivid descriptions and an unexpected twist.",
            "In a world where dreams are shared, a young girl discovers she can manipulate other people's dreams.",
            0.9, 0.8, 500, 300, 1, None, False]
                ]
                    
        gr.Examples(
            examples=examples,
            inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt],
            outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability],
            fn=run_inference_and_analysis,
            cache_examples=True,
        )

        gr.Markdown(
            """
            For more information, visit [Pixeltable's GitHub repository](https://github.com/pixeltable/pixeltable).
            """
        )
        
        submit_btn.click(
            run_inference_and_analysis,
            inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt],
            outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability, history, responses, analysis, params]
        )
    
    return demo

# Launch the Gradio interface
if __name__ == "__main__":
    gradio_interface().launch()