File size: 14,132 Bytes
cbf16d4 57710db cbf16d4 7037bb1 cbf16d4 57710db cbf16d4 57710db d070c8f cbf16d4 57710db 7264ec5 d070c8f 57710db 7037bb1 cbf16d4 57710db cbf16d4 d070c8f cbf16d4 7037bb1 d070c8f 7037bb1 cbf16d4 57710db cbf16d4 57710db cbf16d4 57710db cbf16d4 57710db cbf16d4 57710db d070c8f 57710db cbf16d4 57710db cbf16d4 57710db cbf16d4 57710db 8d39277 57710db cbf16d4 7037bb1 57710db 693d55a d070c8f 693d55a 57710db 7037bb1 57710db d070c8f 57710db 7037bb1 693d55a 62421f1 693d55a 62421f1 57710db 35be9b4 57710db 35be9b4 57710db d070c8f 57710db 7037bb1 d070c8f 57710db 7037bb1 57710db cbf16d4 57710db cbf16d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import gradio as gr
import pixeltable as pxt
from pixeltable.functions.mistralai import chat_completions
from datetime import datetime
from textblob import TextBlob
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import os
import getpass
# Ensure necessary NLTK data is downloaded
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('punkt_tab', quiet=True)
# Set up Mistral API key
if 'MISTRAL_API_KEY' not in os.environ:
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
# Define UDFs
@pxt.udf
def get_sentiment_score(text: str) -> float:
return TextBlob(text).sentiment.polarity
@pxt.udf
def extract_keywords(text: str, num_keywords: int = 5) -> list:
stop_words = set(stopwords.words('english'))
words = word_tokenize(text.lower())
keywords = [word for word in words if word.isalnum() and word not in stop_words]
return sorted(set(keywords), key=keywords.count, reverse=True)[:num_keywords]
@pxt.udf
def calculate_readability(text: str) -> float:
words = len(re.findall(r'\w+', text))
sentences = len(re.findall(r'\w+[.!?]', text)) or 1
average_words_per_sentence = words / sentences
return 206.835 - 1.015 * average_words_per_sentence
# Function to run inference and analysis
def run_inference_and_analysis(task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt):
# Initialize Pixeltable
pxt.drop_table('mistral_prompts', ignore_errors=True)
t = pxt.create_table('mistral_prompts', {
'task': pxt.String,
'system': pxt.String,
'input_text': pxt.String,
'timestamp': pxt.Timestamp,
'temperature': pxt.Float,
'top_p': pxt.Float,
'max_tokens': pxt.Int,
'stop': pxt.String,
'random_seed': pxt.Int,
'safe_prompt': pxt.Bool
})
# Insert new row into Pixeltable
t.insert([{
'task': task,
'system': system_prompt,
'input_text': input_text,
'timestamp': datetime.now(),
'temperature': temperature,
'top_p': top_p,
'max_tokens': max_tokens,
'stop': stop,
'random_seed': random_seed,
'safe_prompt': safe_prompt
}])
# Define messages for chat completion
msgs = [
{'role': 'system', 'content': t.system},
{'role': 'user', 'content': t.input_text}
]
common_params = {
'messages': msgs,
'temperature': temperature,
'top_p': top_p,
'max_tokens': max_tokens if max_tokens is not None else 300,
'stop': stop.split(',') if stop else None,
'random_seed': random_seed,
'safe_prompt': safe_prompt
}
# Add computed columns for model responses and analysis
t.add_computed_column(open_mistral_nemo=chat_completions(model='open-mistral-nemo', **common_params))
t.add_computed_column(mistral_medium=chat_completions(model='mistral-medium', **common_params))
# Extract responses
t.add_computed_column(omn_response=t.open_mistral_nemo.choices[0].message.content.astype(pxt.String))
t.add_computed_column(ml_response=t.mistral_medium.choices[0].message.content.astype(pxt.String))
# Add computed columns for analysis
t.add_computed_column(large_sentiment_score=get_sentiment_score(t.ml_response))
t.add_computed_column(large_keywords=extract_keywords(t.ml_response))
t.add_computed_column(large_readability_score=calculate_readability(t.ml_response))
t.add_computed_column(open_sentiment_score=get_sentiment_score(t.omn_response))
t.add_computed_column(open_keywords=extract_keywords(t.omn_response))
t.add_computed_column(open_readability_score=calculate_readability(t.omn_response))
# Retrieve results
results = t.select(
t.omn_response, t.ml_response,
t.large_sentiment_score, t.open_sentiment_score,
t.large_keywords, t.open_keywords,
t.large_readability_score, t.open_readability_score
).tail(1)
history = t.select(t.timestamp, t.task, t.system, t.input_text).order_by(t.timestamp, asc=False).collect().to_pandas()
responses = t.select(t.timestamp, t.omn_response, t.ml_response).order_by(t.timestamp, asc=False).collect().to_pandas()
analysis = t.select(
t.timestamp,
t.open_sentiment_score,
t.large_sentiment_score,
t.open_keywords,
t.large_keywords,
t.open_readability_score,
t.large_readability_score
).order_by(t.timestamp, asc=False).collect().to_pandas()
params = t.select(
t.timestamp,
t.temperature,
t.top_p,
t.max_tokens,
t.stop,
t.random_seed,
t.safe_prompt
).order_by(t.timestamp, asc=False).collect().to_pandas()
return (
results['omn_response'][0],
results['ml_response'][0],
results['large_sentiment_score'][0],
results['open_sentiment_score'][0],
results['large_keywords'][0],
results['open_keywords'][0],
results['large_readability_score'][0],
results['open_readability_score'][0],
history,
responses,
analysis,
params
)
# Gradio interface
def gradio_interface():
with gr.Blocks(theme=gr.themes.Base(), title="Prompt Engineering and LLM Studio") as demo:
gr.HTML(
"""
<div style="margin-bottom: 20px;">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/resources/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
</div>
"""
)
gr.Markdown(
"""
# Prompt Engineering and LLM Studio
This application demonstrates how [Pixeltable](https://github.com/pixeltable/pixeltable) can be used for rapid and incremental prompt engineering
and model comparison workflows. It showcases Pixeltable's ability to directly store, version, index,
and transform data while providing an interactive interface to experiment with different prompts and models.
Remember, effective prompt engineering often requires experimentation and iteration. Use this tool to systematically improve your prompts and understand how different inputs and parameters affect the LLM outputs.
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("What does it do?", open=False):
gr.Markdown(
"""
1. **Data Organization**: Pixeltable uses tables and views to organize data, similar to traditional databases but with enhanced capabilities for AI workflows.
2. **Computed Columns**: These are dynamically generated columns based on expressions applied to columns.
3. **Data Storage**: All prompts, responses, and analysis results are stored in Pixeltable tables.
4. **Versioning**: Every operations are automatically versioned, allowing you to track changes over time.
5. **UDFs**: Sentiment scores, keywords, and readability scores are computed dynamically.
6. **Querying**: The history and analysis tabs leverage Pixeltable's querying capabilities to display results.
"""
)
with gr.Column():
with gr.Accordion("How does it work?", open=False):
gr.Markdown(
"""
1. **Define your task**: This helps you keep track of different experiments.
2. **Set up your prompt**: Enter a system prompt in the "System Prompt" field. Write your specific input or question in the "Input Text" field
3. **Adjust parameters (optional)**: Adjust temperature, top_p, token limits, etc., to control the model's output.
4. **Run the analysis**: Click the "Run Inference and Analysis" button.
5. **Review the results**: Compare the responses from both models and exmaine the scores.
6. **Iterate and refine**: Based on the results, refine your prompt or adjust parameters.
"""
)
with gr.Row():
with gr.Column():
task = gr.Textbox(label="Task (Arbitrary Category)")
system_prompt = gr.Textbox(label="System Prompt")
input_text = gr.Textbox(label="Input Text")
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Top P")
max_tokens = gr.Number(label="Max Tokens", value=300)
stop = gr.Textbox(label="Stop Sequences (comma-separated)")
random_seed = gr.Number(label="Random Seed", value=None)
safe_prompt = gr.Checkbox(label="Safe Prompt", value=False)
submit_btn = gr.Button("Run Inference and Analysis")
with gr.Tabs():
with gr.Tab("Prompt Input"):
history = gr.Dataframe(
headers=["Task", "System Prompt", "Input Text", "Timestamp"],
wrap=True
)
with gr.Tab("Model Responses"):
responses = gr.Dataframe(
headers=["Timestamp", "Open-Mistral-Nemo Response", "Mistral-Medium Response"],
wrap=True
)
with gr.Tab("Analysis Results"):
analysis = gr.Dataframe(
headers=[
"Timestamp",
"Open-Mistral-Nemo Sentiment",
"Mistral-Medium Sentiment",
"Open-Mistral-Nemo Keywords",
"Mistral-Medium Keywords",
"Open-Mistral-Nemo Readability",
"Mistral-Medium Readability"
],
wrap=True
)
with gr.Tab("Model Parameters"):
params = gr.Dataframe(
headers=[
"Timestamp",
"Temperature",
"Top P",
"Max Tokens",
"Min Tokens",
"Stop Sequences",
"Random Seed",
"Safe Prompt"
],
wrap=True
)
with gr.Column():
omn_response = gr.Textbox(label="Open-Mistral-Nemo Response")
ml_response = gr.Textbox(label="Mistral-Medium Response")
with gr.Row():
large_sentiment = gr.Number(label="Mistral-Medium Sentiment")
open_sentiment = gr.Number(label="Open-Mistral-Nemo Sentiment")
with gr.Row():
large_keywords = gr.Textbox(label="Mistral-Medium Keywords")
open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords")
with gr.Row():
large_readability = gr.Number(label="Mistral-Medium Readability")
open_readability = gr.Number(label="Open-Mistral-Nemo Readability")
# Define the examples
examples = [
# Example 1: Sentiment Analysis
["Sentiment Analysis",
"You are an AI trained to analyze the sentiment of text. Provide a detailed analysis of the emotional tone, highlighting key phrases that indicate sentiment.",
"The new restaurant downtown exceeded all my expectations. The food was exquisite, the service impeccable, and the ambiance was perfect for a romantic evening. I can't wait to go back!",
0.3, 0.95, 200, 3, None, False],
# Example 2: Creative Writing
["Story Generation",
"You are a creative writer. Generate a short, engaging story based on the given prompt. Include vivid descriptions and an unexpected twist.",
"In a world where dreams are shared, a young girl discovers she can manipulate other people's dreams.",
0.9, 0.8, 500, 300, 1, None, False]
]
gr.Examples(
examples=examples,
inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt],
outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability],
fn=run_inference_and_analysis,
cache_examples=True,
)
gr.Markdown(
"""
For more information, visit [Pixeltable's GitHub repository](https://github.com/pixeltable/pixeltable).
"""
)
submit_btn.click(
run_inference_and_analysis,
inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt],
outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability, history, responses, analysis, params]
)
return demo
# Launch the Gradio interface
if __name__ == "__main__":
gradio_interface().launch() |