import gradio as gr import pixeltable as pxt from pixeltable.functions.mistralai import chat_completions from datetime import datetime from textblob import TextBlob import re import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import os import getpass # Ensure necessary NLTK data is downloaded nltk.download('punkt', quiet=True) nltk.download('stopwords', quiet=True) nltk.download('punkt_tab', quiet=True) # Set up Mistral API key if 'MISTRAL_API_KEY' not in os.environ: os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:') # Define UDFs @pxt.udf def get_sentiment_score(text: str) -> float: return TextBlob(text).sentiment.polarity @pxt.udf def extract_keywords(text: str, num_keywords: int = 5) -> list: stop_words = set(stopwords.words('english')) words = word_tokenize(text.lower()) keywords = [word for word in words if word.isalnum() and word not in stop_words] return sorted(set(keywords), key=keywords.count, reverse=True)[:num_keywords] @pxt.udf def calculate_readability(text: str) -> float: words = len(re.findall(r'\w+', text)) sentences = len(re.findall(r'\w+[.!?]', text)) or 1 average_words_per_sentence = words / sentences return 206.835 - 1.015 * average_words_per_sentence # Function to run inference and analysis def run_inference_and_analysis(task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt): # Initialize Pixeltable pxt.drop_table('mistral_prompts', ignore_errors=True) t = pxt.create_table('mistral_prompts', { 'task': pxt.String, 'system': pxt.String, 'input_text': pxt.String, 'timestamp': pxt.Timestamp, 'temperature': pxt.Float, 'top_p': pxt.Float, 'max_tokens': pxt.Int, 'stop': pxt.String, 'random_seed': pxt.Int, 'safe_prompt': pxt.Bool }) # Insert new row into Pixeltable t.insert([{ 'task': task, 'system': system_prompt, 'input_text': input_text, 'timestamp': datetime.now(), 'temperature': temperature, 'top_p': top_p, 'max_tokens': max_tokens, 'stop': stop, 'random_seed': random_seed, 'safe_prompt': safe_prompt }]) # Define messages for chat completion msgs = [ {'role': 'system', 'content': t.system}, {'role': 'user', 'content': t.input_text} ] common_params = { 'messages': msgs, 'temperature': temperature, 'top_p': top_p, 'max_tokens': max_tokens if max_tokens is not None else 300, 'stop': stop.split(',') if stop else None, 'random_seed': random_seed, 'safe_prompt': safe_prompt } # Add computed columns for model responses and analysis t.add_computed_column(open_mistral_nemo=chat_completions(model='open-mistral-nemo', **common_params)) t.add_computed_column(mistral_medium=chat_completions(model='mistral-medium', **common_params)) # Extract responses t.add_computed_column(omn_response=t.open_mistral_nemo.choices[0].message.content.astype(pxt.String)) t.add_computed_column(ml_response=t.mistral_medium.choices[0].message.content.astype(pxt.String)) # Add computed columns for analysis t.add_computed_column(large_sentiment_score=get_sentiment_score(t.ml_response)) t.add_computed_column(large_keywords=extract_keywords(t.ml_response)) t.add_computed_column(large_readability_score=calculate_readability(t.ml_response)) t.add_computed_column(open_sentiment_score=get_sentiment_score(t.omn_response)) t.add_computed_column(open_keywords=extract_keywords(t.omn_response)) t.add_computed_column(open_readability_score=calculate_readability(t.omn_response)) # Retrieve results results = t.select( t.omn_response, t.ml_response, t.large_sentiment_score, t.open_sentiment_score, t.large_keywords, t.open_keywords, t.large_readability_score, t.open_readability_score ).tail(1) history = t.select(t.timestamp, t.task, t.system, t.input_text).order_by(t.timestamp, asc=False).collect().to_pandas() responses = t.select(t.timestamp, t.omn_response, t.ml_response).order_by(t.timestamp, asc=False).collect().to_pandas() analysis = t.select( t.timestamp, t.open_sentiment_score, t.large_sentiment_score, t.open_keywords, t.large_keywords, t.open_readability_score, t.large_readability_score ).order_by(t.timestamp, asc=False).collect().to_pandas() params = t.select( t.timestamp, t.temperature, t.top_p, t.max_tokens, t.stop, t.random_seed, t.safe_prompt ).order_by(t.timestamp, asc=False).collect().to_pandas() return ( results['omn_response'][0], results['ml_response'][0], results['large_sentiment_score'][0], results['open_sentiment_score'][0], results['large_keywords'][0], results['open_keywords'][0], results['large_readability_score'][0], results['open_readability_score'][0], history, responses, analysis, params ) # Gradio interface def gradio_interface(): with gr.Blocks(theme=gr.themes.Base(), title="Prompt Engineering and LLM Studio") as demo: gr.HTML( """
Pixeltable
""" ) gr.Markdown( """ # Prompt Engineering and LLM Studio This application demonstrates how [Pixeltable](https://github.com/pixeltable/pixeltable) can be used for rapid and incremental prompt engineering and model comparison workflows. It showcases Pixeltable's ability to directly store, version, index, and transform data while providing an interactive interface to experiment with different prompts and models. Remember, effective prompt engineering often requires experimentation and iteration. Use this tool to systematically improve your prompts and understand how different inputs and parameters affect the LLM outputs. """ ) with gr.Row(): with gr.Column(): with gr.Accordion("What does it do?", open=False): gr.Markdown( """ 1. **Data Organization**: Pixeltable uses tables and views to organize data, similar to traditional databases but with enhanced capabilities for AI workflows. 2. **Computed Columns**: These are dynamically generated columns based on expressions applied to columns. 3. **Data Storage**: All prompts, responses, and analysis results are stored in Pixeltable tables. 4. **Versioning**: Every operations are automatically versioned, allowing you to track changes over time. 5. **UDFs**: Sentiment scores, keywords, and readability scores are computed dynamically. 6. **Querying**: The history and analysis tabs leverage Pixeltable's querying capabilities to display results. """ ) with gr.Column(): with gr.Accordion("How does it work?", open=False): gr.Markdown( """ 1. **Define your task**: This helps you keep track of different experiments. 2. **Set up your prompt**: Enter a system prompt in the "System Prompt" field. Write your specific input or question in the "Input Text" field 3. **Adjust parameters (optional)**: Adjust temperature, top_p, token limits, etc., to control the model's output. 4. **Run the analysis**: Click the "Run Inference and Analysis" button. 5. **Review the results**: Compare the responses from both models and exmaine the scores. 6. **Iterate and refine**: Based on the results, refine your prompt or adjust parameters. """ ) with gr.Row(): with gr.Column(): task = gr.Textbox(label="Task (Arbitrary Category)") system_prompt = gr.Textbox(label="System Prompt") input_text = gr.Textbox(label="Input Text") with gr.Accordion("Advanced Settings", open=False): temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Top P") max_tokens = gr.Number(label="Max Tokens", value=300) stop = gr.Textbox(label="Stop Sequences (comma-separated)") random_seed = gr.Number(label="Random Seed", value=None) safe_prompt = gr.Checkbox(label="Safe Prompt", value=False) submit_btn = gr.Button("Run Inference and Analysis") with gr.Tabs(): with gr.Tab("Prompt Input"): history = gr.Dataframe( headers=["Task", "System Prompt", "Input Text", "Timestamp"], wrap=True ) with gr.Tab("Model Responses"): responses = gr.Dataframe( headers=["Timestamp", "Open-Mistral-Nemo Response", "Mistral-Medium Response"], wrap=True ) with gr.Tab("Analysis Results"): analysis = gr.Dataframe( headers=[ "Timestamp", "Open-Mistral-Nemo Sentiment", "Mistral-Medium Sentiment", "Open-Mistral-Nemo Keywords", "Mistral-Medium Keywords", "Open-Mistral-Nemo Readability", "Mistral-Medium Readability" ], wrap=True ) with gr.Tab("Model Parameters"): params = gr.Dataframe( headers=[ "Timestamp", "Temperature", "Top P", "Max Tokens", "Min Tokens", "Stop Sequences", "Random Seed", "Safe Prompt" ], wrap=True ) with gr.Column(): omn_response = gr.Textbox(label="Open-Mistral-Nemo Response") ml_response = gr.Textbox(label="Mistral-Medium Response") with gr.Row(): large_sentiment = gr.Number(label="Mistral-Medium Sentiment") open_sentiment = gr.Number(label="Open-Mistral-Nemo Sentiment") with gr.Row(): large_keywords = gr.Textbox(label="Mistral-Medium Keywords") open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords") with gr.Row(): large_readability = gr.Number(label="Mistral-Medium Readability") open_readability = gr.Number(label="Open-Mistral-Nemo Readability") # Define the examples examples = [ # Example 1: Sentiment Analysis ["Sentiment Analysis", "You are an AI trained to analyze the sentiment of text. Provide a detailed analysis of the emotional tone, highlighting key phrases that indicate sentiment.", "The new restaurant downtown exceeded all my expectations. The food was exquisite, the service impeccable, and the ambiance was perfect for a romantic evening. I can't wait to go back!", 0.3, 0.95, 200, 3, None, False], # Example 2: Creative Writing ["Story Generation", "You are a creative writer. Generate a short, engaging story based on the given prompt. Include vivid descriptions and an unexpected twist.", "In a world where dreams are shared, a young girl discovers she can manipulate other people's dreams.", 0.9, 0.8, 500, 300, 1, None, False] ] gr.Examples( examples=examples, inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt], outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability], fn=run_inference_and_analysis, cache_examples=True, ) gr.Markdown( """ For more information, visit [Pixeltable's GitHub repository](https://github.com/pixeltable/pixeltable). """ ) submit_btn.click( run_inference_and_analysis, inputs=[task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt], outputs=[omn_response, ml_response, large_sentiment, open_sentiment, large_keywords, open_keywords, large_readability, open_readability, history, responses, analysis, params] ) return demo # Launch the Gradio interface if __name__ == "__main__": gradio_interface().launch()