Spaces:
Running
on
L4
Running
on
L4
File size: 24,901 Bytes
b1e1a76 9d434bb 71850a7 9d434bb b1e1a76 9d434bb b1e1a76 d8f5761 9d434bb 512efa6 b1e1a76 9d434bb b1e1a76 515113a b1e1a76 9d434bb b97852e b1e1a76 b97852e b1e1a76 b97852e 9d434bb b1e1a76 53eb71f b1e1a76 71850a7 b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 26adb3f 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 71850a7 b1e1a76 71850a7 b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 26adb3f 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 71850a7 b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 71850a7 b1e1a76 9d434bb 71850a7 9d434bb b1e1a76 d8f5761 b1e1a76 d8f5761 b1e1a76 9d434bb 982679d b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 512efa6 4c47c92 b1e1a76 d8f5761 b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 512efa6 4c47c92 b1e1a76 d8f5761 b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 9d434bb b1e1a76 512efa6 4c47c92 9d434bb 512efa6 9d434bb b1e1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import argparse
import logging
import os
import pathlib
import time
import tempfile
import platform
import gc
if platform.system().lower() == 'windows':
temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath
elif platform.system().lower() == 'linux':
temp = pathlib.WindowsPath
pathlib.WindowsPath = pathlib.PosixPath
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
import langid
langid.set_languages(['en', 'zh', 'ja'])
import torch
import torchaudio
import random
import numpy as np
from data.tokenizer import (
AudioTokenizer,
tokenize_audio,
)
from data.collation import get_text_token_collater
from models.vallex import VALLE
from utils.g2p import PhonemeBpeTokenizer
from descriptions import *
from macros import *
from examples import *
import gradio as gr
import whisper
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json")
text_collater = get_text_token_collater()
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
# VALL-E-X model
model = VALLE(
N_DIM,
NUM_HEAD,
NUM_LAYERS,
norm_first=True,
add_prenet=False,
prefix_mode=PREFIX_MODE,
share_embedding=True,
nar_scale_factor=1.0,
prepend_bos=True,
num_quantizers=NUM_QUANTIZERS,
).to(device)
checkpoint = torch.load("./epoch-10.pt", map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(
checkpoint["model"], strict=True
)
del checkpoint
assert not missing_keys
model.eval()
# Encodec model
audio_tokenizer = AudioTokenizer(device)
# ASR
whisper_model = whisper.load_model("medium").to(device)
# Voice Presets
preset_list = os.walk("./presets/").__next__()[2]
preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")]
def clear_prompts():
try:
path = tempfile.gettempdir()
for eachfile in os.listdir(path):
filename = os.path.join(path, eachfile)
if os.path.isfile(filename) and filename.endswith(".npz"):
lastmodifytime = os.stat(filename).st_mtime
endfiletime = time.time() - 60
if endfiletime > lastmodifytime:
os.remove(filename)
except:
return
def transcribe_one(model, audio_path):
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
lang = max(probs, key=probs.get)
# decode the audio
options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150)
result = whisper.decode(model, mel, options)
# print the recognized text
print(result.text)
text_pr = result.text
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、":
text_pr += "."
# delete all variables
del audio, mel, probs, result
return lang, text_pr
def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content):
clear_prompts()
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio
sr, wav_pr = audio_prompt
if len(wav_pr) / sr > 15:
return "Rejected, Audio too long (should be less than 15 seconds)", None
if not isinstance(wav_pr, torch.FloatTensor):
wav_pr = torch.FloatTensor(wav_pr)
if wav_pr.abs().max() > 1:
wav_pr /= wav_pr.abs().max()
if wav_pr.size(-1) == 2:
wav_pr = wav_pr[:, 0]
if wav_pr.ndim == 1:
wav_pr = wav_pr.unsqueeze(0)
assert wav_pr.ndim and wav_pr.size(0) == 1
if transcript_content == "":
text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False)
else:
lang_pr = langid.classify(str(transcript_content))[0]
lang_token = lang2token[lang_pr]
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}"
# tokenize audio
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr))
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy()
# tokenize text
phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip())
text_tokens, enroll_x_lens = text_collater(
[
phonemes
]
)
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n"
# save as npz file
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"),
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr])
# delete all variables
del audio_tokens, text_tokens, phonemes, lang_pr, text_pr, wav_pr, sr, uploaded_audio, recorded_audio
return message, os.path.join(tempfile.gettempdir(), f"{name}.npz")
def make_prompt(name, wav, sr, save=True):
if not isinstance(wav, torch.FloatTensor):
wav = torch.tensor(wav)
if wav.abs().max() > 1:
wav /= wav.abs().max()
if wav.size(-1) == 2:
wav = wav.mean(-1, keepdim=False)
if wav.ndim == 1:
wav = wav.unsqueeze(0)
assert wav.ndim and wav.size(0) == 1
torchaudio.save(f"./prompts/{name}.wav", wav, sr)
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav")
lang_token = lang2token[lang]
text = lang_token + text + lang_token
with open(f"./prompts/{name}.txt", 'w') as f:
f.write(text)
if not save:
os.remove(f"./prompts/{name}.wav")
os.remove(f"./prompts/{name}.txt")
# delete all variables
del lang_token, wav, sr
return text, lang
@torch.no_grad()
def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt, transcript_content):
if len(text) > 150:
return "Rejected, Text too long (should be less than 150 characters)", None
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt
sr, wav_pr = audio_prompt
if len(wav_pr) / sr > 15:
return "Rejected, Audio too long (should be less than 15 seconds)", None
if not isinstance(wav_pr, torch.FloatTensor):
wav_pr = torch.FloatTensor(wav_pr)
if wav_pr.abs().max() > 1:
wav_pr /= wav_pr.abs().max()
if wav_pr.size(-1) == 2:
wav_pr = wav_pr[:, 0]
if wav_pr.ndim == 1:
wav_pr = wav_pr.unsqueeze(0)
assert wav_pr.ndim and wav_pr.size(0) == 1
if transcript_content == "":
text_pr, lang_pr = make_prompt('dummy', wav_pr, sr, save=False)
else:
lang_pr = langid.classify(str(transcript_content))[0]
lang_token = lang2token[lang_pr]
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}"
if language == 'auto-detect':
lang_token = lang2token[langid.classify(text)[0]]
else:
lang_token = langdropdown2token[language]
lang = token2lang[lang_token]
text = lang_token + text + lang_token
# tokenize audio
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr))
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device)
# tokenize text
logging.info(f"synthesize text: {text}")
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip())
text_tokens, text_tokens_lens = text_collater(
[
phone_tokens
]
)
enroll_x_lens = None
if text_pr:
text_prompts, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip())
text_prompts, enroll_x_lens = text_collater(
[
text_prompts
]
)
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1)
text_tokens_lens += enroll_x_lens
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]]
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
audio_prompts,
enroll_x_lens=enroll_x_lens,
top_k=-100,
temperature=1,
prompt_language=lang_pr,
text_language=langs if accent == "no-accent" else lang,
)
samples = audio_tokenizer.decode(
[(encoded_frames.transpose(2, 1), None)]
)
message = f"text prompt: {text_pr}\nsythesized text: {text}"
# delete all variables
del audio_prompts, text_tokens, text_prompts, phone_tokens, encoded_frames, wav_pr, sr, audio_prompt, record_audio_prompt, transcript_content
return message, (24000, samples[0][0].cpu().numpy())
@torch.no_grad()
def infer_from_prompt(text, language, accent, preset_prompt, prompt_file):
if len(text) > 150:
return "Rejected, Text too long (should be less than 150 characters)", None
clear_prompts()
# text to synthesize
if language == 'auto-detect':
lang_token = lang2token[langid.classify(text)[0]]
else:
lang_token = langdropdown2token[language]
lang = token2lang[lang_token]
text = lang_token + text + lang_token
# load prompt
if prompt_file is not None:
prompt_data = np.load(prompt_file.name)
else:
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz"))
audio_prompts = prompt_data['audio_tokens']
text_prompts = prompt_data['text_tokens']
lang_pr = prompt_data['lang_code']
lang_pr = code2lang[int(lang_pr)]
# numpy to tensor
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device)
text_prompts = torch.tensor(text_prompts).type(torch.int32)
enroll_x_lens = text_prompts.shape[-1]
logging.info(f"synthesize text: {text}")
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip())
text_tokens, text_tokens_lens = text_collater(
[
phone_tokens
]
)
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1)
text_tokens_lens += enroll_x_lens
# accent control
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]]
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
audio_prompts,
enroll_x_lens=enroll_x_lens,
top_k=-100,
temperature=1,
prompt_language=lang_pr,
text_language=langs if accent == "no-accent" else lang,
)
samples = audio_tokenizer.decode(
[(encoded_frames.transpose(2, 1), None)]
)
message = f"sythesized text: {text}"
# delete all variables
del audio_prompts, text_tokens, text_prompts, phone_tokens, encoded_frames, prompt_file, preset_prompt
return message, (24000, samples[0][0].cpu().numpy())
from utils.sentence_cutter import split_text_into_sentences
@torch.no_grad()
def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'):
"""
For long audio generation, two modes are available.
fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence.
sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance.
"""
if len(text) > 1000:
return "Rejected, Text too long (should be less than 1000 characters)", None
mode = 'fixed-prompt'
global model, audio_tokenizer, text_tokenizer, text_collater
if (prompt is None or prompt == "") and preset_prompt == "":
mode = 'sliding-window' # If no prompt is given, use sliding-window mode
sentences = split_text_into_sentences(text)
# detect language
if language == "auto-detect":
language = langid.classify(text)[0]
else:
language = token2lang[langdropdown2token[language]]
# if initial prompt is given, encode it
if prompt is not None and prompt != "":
# load prompt
prompt_data = np.load(prompt.name)
audio_prompts = prompt_data['audio_tokens']
text_prompts = prompt_data['text_tokens']
lang_pr = prompt_data['lang_code']
lang_pr = code2lang[int(lang_pr)]
# numpy to tensor
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device)
text_prompts = torch.tensor(text_prompts).type(torch.int32)
elif preset_prompt is not None and preset_prompt != "":
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz"))
audio_prompts = prompt_data['audio_tokens']
text_prompts = prompt_data['text_tokens']
lang_pr = prompt_data['lang_code']
lang_pr = code2lang[int(lang_pr)]
# numpy to tensor
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device)
text_prompts = torch.tensor(text_prompts).type(torch.int32)
else:
audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device)
text_prompts = torch.zeros([1, 0]).type(torch.int32)
lang_pr = language if language != 'mix' else 'en'
if mode == 'fixed-prompt':
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device)
for text in sentences:
text = text.replace("\n", "").strip(" ")
if text == "":
continue
lang_token = lang2token[language]
lang = token2lang[lang_token]
text = lang_token + text + lang_token
enroll_x_lens = text_prompts.shape[-1]
logging.info(f"synthesize text: {text}")
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip())
text_tokens, text_tokens_lens = text_collater(
[
phone_tokens
]
)
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1)
text_tokens_lens += enroll_x_lens
# accent control
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]]
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
audio_prompts,
enroll_x_lens=enroll_x_lens,
top_k=-100,
temperature=1,
prompt_language=lang_pr,
text_language=langs if accent == "no-accent" else lang,
)
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1)
samples = audio_tokenizer.decode(
[(complete_tokens, None)]
)
message = f"Cut into {len(sentences)} sentences"
return message, (24000, samples[0][0].cpu().numpy())
elif mode == "sliding-window":
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device)
original_audio_prompts = audio_prompts
original_text_prompts = text_prompts
for text in sentences:
text = text.replace("\n", "").strip(" ")
if text == "":
continue
lang_token = lang2token[language]
lang = token2lang[lang_token]
text = lang_token + text + lang_token
enroll_x_lens = text_prompts.shape[-1]
logging.info(f"synthesize text: {text}")
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip())
text_tokens, text_tokens_lens = text_collater(
[
phone_tokens
]
)
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1)
text_tokens_lens += enroll_x_lens
# accent control
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]]
encoded_frames = model.inference(
text_tokens.to(device),
text_tokens_lens.to(device),
audio_prompts,
enroll_x_lens=enroll_x_lens,
top_k=-100,
temperature=1,
prompt_language=lang_pr,
text_language=langs if accent == "no-accent" else lang,
)
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1)
if torch.rand(1) < 1.0:
audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:]
text_prompts = text_tokens[:, enroll_x_lens:]
else:
audio_prompts = original_audio_prompts
text_prompts = original_text_prompts
samples = audio_tokenizer.decode(
[(complete_tokens, None)]
)
message = f"Cut into {len(sentences)} sentences"
return message, (24000, samples[0][0].cpu().numpy())
else:
raise ValueError(f"No such mode {mode}")
def main():
app = gr.Blocks()
with app:
gr.Markdown(top_md)
with gr.Tab("Infer from audio"):
gr.Markdown(infer_from_audio_md)
with gr.Row():
with gr.Column():
textbox = gr.TextArea(label="Text",
placeholder="Type your sentence here",
value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input")
language_dropdown = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', label='language')
accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent')
textbox_transcript = gr.TextArea(label="Transcript",
placeholder="Write transcript here. (leave empty to use whisper)",
value="", elem_id=f"prompt-name")
upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True)
record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True)
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn = gr.Button("Generate!")
btn.click(infer_from_audio,
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript],
outputs=[text_output, audio_output])
textbox_mp = gr.TextArea(label="Prompt name",
placeholder="Name your prompt here",
value="prompt_1", elem_id=f"prompt-name")
btn_mp = gr.Button("Make prompt!")
prompt_output = gr.File(interactive=False)
btn_mp.click(make_npz_prompt,
inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt, textbox_transcript],
outputs=[text_output, prompt_output])
gr.Examples(examples=infer_from_audio_examples,
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript],
outputs=[text_output, audio_output],
fn=infer_from_audio,
cache_examples=False,)
with gr.Tab("Make prompt"):
gr.Markdown(make_prompt_md)
with gr.Row():
with gr.Column():
textbox2 = gr.TextArea(label="Prompt name",
placeholder="Name your prompt here",
value="prompt_1", elem_id=f"prompt-name")
# 添加选择语言和输入台本的地方
textbox_transcript2 = gr.TextArea(label="Transcript",
placeholder="Write transcript here. (leave empty to use whisper)",
value="", elem_id=f"prompt-name")
upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True)
record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True)
with gr.Column():
text_output_2 = gr.Textbox(label="Message")
prompt_output_2 = gr.File(interactive=False)
btn_2 = gr.Button("Make!")
btn_2.click(make_npz_prompt,
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2],
outputs=[text_output_2, prompt_output_2])
gr.Examples(examples=make_npz_prompt_examples,
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2],
outputs=[text_output_2, prompt_output_2],
fn=make_npz_prompt,
cache_examples=False,)
with gr.Tab("Infer from prompt"):
gr.Markdown(infer_from_prompt_md)
with gr.Row():
with gr.Column():
textbox_3 = gr.TextArea(label="Text",
placeholder="Type your sentence here",
value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input")
language_dropdown_3 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語', 'Mix'], value='auto-detect',
label='language')
accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent',
label='accent')
preset_dropdown_3 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset')
prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True)
with gr.Column():
text_output_3 = gr.Textbox(label="Message")
audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn_3 = gr.Button("Generate!")
btn_3.click(infer_from_prompt,
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file],
outputs=[text_output_3, audio_output_3])
gr.Examples(examples=infer_from_prompt_examples,
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file],
outputs=[text_output_3, audio_output_3],
fn=infer_from_prompt,
cache_examples=False,)
with gr.Tab("Infer long text"):
gr.Markdown(long_text_md)
with gr.Row():
with gr.Column():
textbox_4 = gr.TextArea(label="Text",
placeholder="Type your sentence here",
value=long_text_example, elem_id=f"tts-input")
language_dropdown_4 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect',
label='language')
accent_dropdown_4 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent',
label='accent')
preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset')
prompt_file_4 = gr.File(file_count='single', file_types=['.npz'], interactive=True)
with gr.Column():
text_output_4 = gr.TextArea(label="Message")
audio_output_4 = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn_4 = gr.Button("Generate!")
btn_4.click(infer_long_text,
inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, accent_dropdown_4],
outputs=[text_output_4, audio_output_4])
app.launch()
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main() |