Spaces:
Running
on
L4
Running
on
L4
File size: 49,568 Bytes
b1e1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 |
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import logging
import random
import math
from functools import reduce
from itertools import repeat
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import Embedding as ScaledEmbedding
from utils import Transpose
class ActivationBalancerFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
scale_factor: Tensor,
sign_factor: Optional[Tensor],
channel_dim: int,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
ctx.channel_dim = channel_dim
xgt0 = x > 0
if sign_factor is None:
ctx.save_for_backward(xgt0, scale_factor)
else:
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
if len(ctx.saved_tensors) == 3:
xgt0, scale_factor, sign_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
scale_factor = scale_factor.unsqueeze(-1)
sign_factor = sign_factor.unsqueeze(-1)
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
else:
xgt0, scale_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
scale_factor = scale_factor.unsqueeze(-1)
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
neg_delta_grad = x_grad.abs() * factor
return (
x_grad - neg_delta_grad,
None,
None,
None,
)
def _compute_scale_factor(
x: Tensor,
channel_dim: int,
min_abs: float,
max_abs: float,
gain_factor: float,
max_factor: float,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
if min_abs == 0.0:
below_threshold = 0.0
else:
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
# x_abs)_mean , min_abs.
below_threshold = (
(min_abs - x_abs_mean) * (gain_factor / min_abs)
).clamp(min=0, max=max_factor)
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
min=0, max=max_factor
)
return below_threshold - above_threshold
def _compute_sign_factor(
x: Tensor,
channel_dim: int,
min_positive: float,
max_positive: float,
gain_factor: float,
max_factor: float,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
if min_positive == 0.0:
factor1 = 0.0
else:
# 0 if proportion_positive >= min_positive, else can be
# as large as max_factor.
factor1 = (
(min_positive - proportion_positive) * (gain_factor / min_positive)
).clamp_(min=0, max=max_factor)
if max_positive == 1.0:
factor2 = 0.0
else:
# 0 if self.proportion_positive <= max_positive, else can be
# as large as -max_factor.
factor2 = (
(proportion_positive - max_positive)
* (gain_factor / (1.0 - max_positive))
).clamp_(min=0, max=max_factor)
sign_factor = factor1 - factor2
# require min_positive != 0 or max_positive != 1:
assert not isinstance(sign_factor, float)
return sign_factor
class ActivationScaleBalancerFunction(torch.autograd.Function):
"""
This object is used in class ActivationBalancer when the user specified
min_positive=0, max_positive=1, so there are no constraints on the signs
of the activations and only the absolute value has a constraint.
"""
@staticmethod
def forward(
ctx,
x: Tensor,
sign_factor: Tensor,
scale_factor: Tensor,
channel_dim: int,
) -> Tensor:
if channel_dim < 0:
channel_dim += x.ndim
ctx.channel_dim = channel_dim
xgt0 = x > 0
ctx.save_for_backward(xgt0, sign_factor, scale_factor)
return x
@staticmethod
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
xgt0, sign_factor, scale_factor = ctx.saved_tensors
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
sign_factor = sign_factor.unsqueeze(-1)
scale_factor = scale_factor.unsqueeze(-1)
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
neg_delta_grad = x_grad.abs() * factor
return (
x_grad - neg_delta_grad,
None,
None,
None,
)
class RandomClampFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
min: Optional[float],
max: Optional[float],
prob: float,
reflect: float,
) -> Tensor:
x_clamped = torch.clamp(x, min=min, max=max)
mask = torch.rand_like(x) < prob
ans = torch.where(mask, x_clamped, x)
if x.requires_grad:
ctx.save_for_backward(ans == x)
ctx.reflect = reflect
if reflect != 0.0:
ans = ans * (1.0 + reflect) - (x * reflect)
return ans
@staticmethod
def backward(
ctx, ans_grad: Tensor
) -> Tuple[Tensor, None, None, None, None]:
(is_same,) = ctx.saved_tensors
x_grad = ans_grad * is_same.to(ans_grad.dtype)
reflect = ctx.reflect
if reflect != 0.0:
x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect)
return x_grad, None, None, None, None
def random_clamp(
x: Tensor,
min: Optional[float] = None,
max: Optional[float] = None,
prob: float = 0.5,
reflect: float = 0.0,
):
return RandomClampFunction.apply(x, min, max, prob, reflect)
def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor:
"""
A randomized way of casting a floating point value to half precision.
"""
if x.dtype == torch.float16:
return x
x_abs = x.abs()
is_too_small = x_abs < min_abs
# for elements where is_too_small is true, random_val will contain +-min_abs with
# probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations,
# for those elements].
random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs)
return torch.where(is_too_small, random_val, x).to(torch.float16)
class RandomGradFunction(torch.autograd.Function):
"""
Does nothing in forward pass; in backward pass, gets rid of very small grads using
randomized approach that preserves expectations (intended to reduce roundoff).
"""
@staticmethod
def forward(ctx, x: Tensor, min_abs: float) -> Tensor:
ctx.min_abs = min_abs
return x
@staticmethod
def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None]:
if ans_grad.dtype == torch.float16:
return (
random_cast_to_half(
ans_grad.to(torch.float32), min_abs=ctx.min_abs
),
None,
)
else:
return ans_grad, None
class RandomGrad(torch.nn.Module):
"""
Gets rid of very small gradients using an expectation-preserving method, intended to increase
accuracy of training when using amp (automatic mixed precision)
"""
def __init__(self, min_abs: float = 5.0e-06):
super(RandomGrad, self).__init__()
self.min_abs = min_abs
def forward(self, x: Tensor):
if (
torch.jit.is_scripting()
or not self.training
or torch.jit.is_tracing()
):
return x
else:
return RandomGradFunction.apply(x, self.min_abs)
class SoftmaxFunction(torch.autograd.Function):
"""
Tries to handle half-precision derivatives in a randomized way that should
be more accurate for training than the default behavior.
"""
@staticmethod
def forward(ctx, x: Tensor, dim: int):
ans = x.softmax(dim=dim)
# if x dtype is float16, x.softmax() returns a float32 because
# (presumably) that op does not support float16, and autocast
# is enabled.
if torch.is_autocast_enabled():
ans = ans.to(torch.float16)
ctx.save_for_backward(ans)
ctx.x_dtype = x.dtype
ctx.dim = dim
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor):
(ans,) = ctx.saved_tensors
with torch.cuda.amp.autocast(enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
return x_grad, None
def softmax(x: Tensor, dim: int):
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x.softmax(dim)
return SoftmaxFunction.apply(x, dim)
class MaxEigLimiterFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
coeffs: Tensor,
direction: Tensor,
channel_dim: int,
grad_scale: float,
) -> Tensor:
ctx.channel_dim = channel_dim
ctx.grad_scale = grad_scale
ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach())
return x
@staticmethod
def backward(ctx, x_grad, *args):
with torch.enable_grad():
(x_orig, coeffs, new_direction) = ctx.saved_tensors
x_orig.requires_grad = True
num_channels = x_orig.shape[ctx.channel_dim]
x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels)
new_direction.requires_grad = False
x = x - x.mean(dim=0)
x_var = (x ** 2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual ** 2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction. This is to be minimized.
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
variance_proportion.backward()
x_orig_grad = x_orig.grad
x_extra_grad = (
x_orig.grad
* ctx.grad_scale
* x_grad.norm()
/ (x_orig_grad.norm() + 1.0e-20)
)
return x_grad + x_extra_grad.detach(), None, None, None, None
class BasicNorm(torch.nn.Module):
"""
This is intended to be a simpler, and hopefully cheaper, replacement for
LayerNorm. The observation this is based on, is that Transformer-type
networks, especially with pre-norm, sometimes seem to set one of the
feature dimensions to a large constant value (e.g. 50), which "defeats"
the LayerNorm because the output magnitude is then not strongly dependent
on the other (useful) features. Presumably the weight and bias of the
LayerNorm are required to allow it to do this.
So the idea is to introduce this large constant value as an explicit
parameter, that takes the role of the "eps" in LayerNorm, so the network
doesn't have to do this trick. We make the "eps" learnable.
Args:
num_channels: the number of channels, e.g. 512.
channel_dim: the axis/dimension corresponding to the channel,
interprted as an offset from the input's ndim if negative.
shis is NOT the num_channels; it should typically be one of
{-2, -1, 0, 1, 2, 3}.
eps: the initial "epsilon" that we add as ballast in:
scale = ((input_vec**2).mean() + epsilon)**-0.5
Note: our epsilon is actually large, but we keep the name
to indicate the connection with conventional LayerNorm.
learn_eps: if true, we learn epsilon; if false, we keep it
at the initial value.
eps_min: float
eps_max: float
"""
def __init__(
self,
num_channels: int,
channel_dim: int = -1, # CAUTION: see documentation.
eps: float = 0.25,
learn_eps: bool = True,
eps_min: float = -3.0,
eps_max: float = 3.0,
) -> None:
super(BasicNorm, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
if learn_eps:
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
else:
self.register_buffer("eps", torch.tensor(eps).log().detach())
self.eps_min = eps_min
self.eps_max = eps_max
def forward(self, x: Tensor) -> Tensor:
assert x.shape[self.channel_dim] == self.num_channels
eps = self.eps
if self.training and random.random() < 0.25:
# with probability 0.25, in training mode, clamp eps between the min
# and max; this will encourage it to learn parameters within the
# allowed range by making parameters that are outside the allowed
# range noisy.
# gradients to allow the parameter to get back into the allowed
# region if it happens to exit it.
eps = eps.clamp(min=self.eps_min, max=self.eps_max)
scales = (
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True) + eps.exp()
) ** -0.5
return x * scales
def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear:
"""
Behaves like a constructor of a modified version of nn.Linear
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Linear(*args, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale
)
return ans
def ScaledConv1d(
*args,
initial_scale: float = 1.0,
kernel_size: int = 3,
padding: str = "same",
**kwargs,
) -> nn.Conv1d:
"""
Behaves like a constructor of a modified version of nn.Conv1d
that gives an easy way to set the default initial parameter scale.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
ans = nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs)
with torch.no_grad():
ans.weight[:] *= initial_scale
if ans.bias is not None:
torch.nn.init.uniform_(
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale
)
return ans
def TransposeScaledConv1d(
*args,
initial_scale: float = 1.0,
kernel_size: int = 3,
padding: str = "same",
**kwargs,
) -> nn.Sequential:
"""
Transpose -> ScaledConv1d
"""
return nn.Sequential(
Transpose(),
ScaledConv1d(
*args,
initial_scale=initial_scale,
kernel_size=kernel_size,
padding=padding,
**kwargs,
),
)
def ScaledConv1dTranspose(
*args,
initial_scale: float = 1.0,
kernel_size: int = 3,
padding: str = "same",
**kwargs,
) -> nn.Sequential:
"""
Transpose -> ScaledConv1d
"""
return nn.Sequential(
ScaledConv1d(
*args,
initial_scale=initial_scale,
kernel_size=kernel_size,
padding=padding,
**kwargs,
),
Transpose(),
)
def TransposeConv1d(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
Transpose -> Conv1d
"""
return nn.Sequential(
Transpose(),
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
)
def Conv1dTranspose(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
ScaledConv1d -> Transpose
"""
return nn.Sequential(
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
Transpose(),
)
class SRLinear(nn.Linear):
"""https://arxiv.org/abs/2303.06296
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
"""
def __init__(self, in_features, out_features, bias=True, **kwargs):
super().__init__(in_features, out_features, bias=bias, **kwargs)
self.register_buffer(
"u", nn.functional.normalize(torch.randn(in_features), dim=0)
)
with torch.no_grad():
sigma = self.get_sigma()
self.register_buffer("spectral_norm", sigma)
self.sigma = nn.Parameter(torch.ones(1))
def get_sigma(self):
with torch.no_grad():
u = self.u
v = self.weight.mv(u)
v = nn.functional.normalize(v, dim=0)
u = self.weight.T.mv(v)
u = nn.functional.normalize(u, dim=0)
self.u.data.copy_(u)
return torch.einsum("c,cd,d->", v, self.weight, u)
def get_weight(self):
sigma = self.get_sigma()
if self.training:
self.spectral_norm.data.copy_(sigma)
weight = (self.sigma / sigma) * self.weight
return weight
def forward(self, x):
return nn.functional.linear(x, self.get_weight(), self.bias)
class SRConv1d(SRLinear):
def __init__(
self,
in_features,
out_features,
kernel_size,
stride: int = 1,
padding: str = "same",
bias: bool = True,
**kwargs,
):
in_features = in_features * kernel_size
super().__init__(in_features, out_features, bias=bias, **kwargs)
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
def forward(self, x):
in_features = self.in_features // self.kernel_size
weight = self.get_weight().view(
self.out_features, in_features, self.kernel_size
)
return nn.functional.conv1d(
x, weight, bias=self.bias, stride=self.stride, padding=self.padding
)
def TransposeSRConv1d(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
Transpose -> SRConv1d
"""
return nn.Sequential(
Transpose(),
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
)
def SRConv1dTranspose(
*args, kernel_size: int = 3, padding: str = "same", **kwargs
) -> nn.Sequential:
"""
SRConv1d -> Transpose
"""
return nn.Sequential(
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs),
Transpose(),
)
class ActivationBalancer(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to encourage, for
each channel, that it is positive at least a proportion `threshold` of the
time. It does this by multiplying negative derivative values by up to
(1+max_factor), and positive derivative values by up to (1-max_factor),
interpolated from 1 at the threshold to those extremal values when none
of the inputs are positive.
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
min_positive: the minimum, per channel, of the proportion of the time
that (x > 0), below which we start to modify the derivatives.
max_positive: the maximum, per channel, of the proportion of the time
that (x > 0), above which we start to modify the derivatives.
max_factor: the maximum factor by which we modify the derivatives for
either the sign constraint or the magnitude constraint;
e.g. with max_factor=0.02, the the derivatives would be multiplied by
values in the range [0.98..1.02].
sign_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_positive and max_positive
are violated.
scale_gain_factor: determines the 'gain' with which we increase the
change in gradient once the constraints on min_abs and max_abs
are violated.
min_abs: the minimum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
max_abs: the maximum average-absolute-value difference from the mean
value per channel, which we allow, before we start to modify
the derivatives to prevent this.
min_prob: determines the minimum probability with which we modify the
gradients for the {min,max}_positive and {min,max}_abs constraints,
on each forward(). This is done randomly to prevent all layers
from doing it at the same time. Early in training we may use
higher probabilities than this; it will decay to this value.
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
min_positive: float = 0.05,
max_positive: float = 0.95,
max_factor: float = 0.04,
sign_gain_factor: float = 0.01,
scale_gain_factor: float = 0.02,
min_abs: float = 0.2,
max_abs: float = 100.0,
min_prob: float = 0.1,
):
super(ActivationBalancer, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.min_positive = min_positive
self.max_positive = max_positive
self.max_factor = max_factor
self.min_abs = min_abs
self.max_abs = max_abs
self.min_prob = min_prob
self.sign_gain_factor = sign_gain_factor
self.scale_gain_factor = scale_gain_factor
# count measures how many times the forward() function has been called.
# We occasionally sync this to a tensor called `count`, that exists to
# make sure it is synced to disk when we load and save the model.
self.cpu_count = 0
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
def forward(self, x: Tensor) -> Tensor:
if (
torch.jit.is_scripting()
or not x.requires_grad
or torch.jit.is_tracing()
):
return _no_op(x)
count = self.cpu_count
self.cpu_count += 1
if random.random() < 0.01:
# Occasionally sync self.cpu_count with self.count.
# count affects the decay of 'prob'. don't do this on every iter,
# because syncing with the GPU is slow.
self.cpu_count = max(self.cpu_count, self.count.item())
self.count.fill_(self.cpu_count)
# the prob of doing some work exponentially decreases from 0.5 till it hits
# a floor at min_prob (==0.1, by default)
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
if random.random() < prob:
sign_gain_factor = 0.5
if self.min_positive != 0.0 or self.max_positive != 1.0:
sign_factor = _compute_sign_factor(
x,
self.channel_dim,
self.min_positive,
self.max_positive,
gain_factor=self.sign_gain_factor / prob,
max_factor=self.max_factor,
)
else:
sign_factor = None
scale_factor = _compute_scale_factor(
x.detach(),
self.channel_dim,
min_abs=self.min_abs,
max_abs=self.max_abs,
gain_factor=self.scale_gain_factor / prob,
max_factor=self.max_factor,
)
return ActivationBalancerFunction.apply(
x,
scale_factor,
sign_factor,
self.channel_dim,
)
else:
return _no_op(x)
def penalize_abs_values_gt(x: Tensor, limit: float, penalty: float) -> Tensor:
"""
Returns x unmodified, but in backprop will put a penalty for the excess of
the absolute values of elements of x over the limit "limit". E.g. if
limit == 10.0, then if x has any values over 10 it will get a penalty.
Caution: the value of this penalty will be affected by grad scaling used
in automatic mixed precision training. For this reasons we use this,
it shouldn't really matter, or may even be helpful; we just use this
to disallow really implausible values of scores to be given to softmax.
"""
x_sign = x.sign()
over_limit = (x.abs() - limit) > 0
# The following is a memory efficient way to penalize the absolute values of
# x that's over the limit. (The memory efficiency comes when you think
# about which items torch needs to cache for the autograd, and which ones it
# can throw away). The numerical value of aux_loss as computed here will
# actually be larger than it should be, by limit * over_limit.sum(), but it
# has the same derivative as the real aux_loss which is penalty * (x.abs() -
# limit).relu().
aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x)
# note: we don't do sum() here on aux)_loss, but it's as if we had done
# sum() due to how with_loss() works.
x = with_loss(x, aux_loss)
# you must use x for something, or this will be ineffective.
return x
def _diag(x: Tensor): # like .diag(), but works for tensors with 3 dims.
if x.ndim == 2:
return x.diag()
else:
(batch, dim, dim) = x.shape
x = x.reshape(batch, dim * dim)
x = x[:, :: dim + 1]
assert x.shape == (batch, dim)
return x
def _whitening_metric(x: Tensor, num_groups: int):
"""
Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of
of the centered feature covariance are the same within each group's covariance matrix
and also between groups.
Args:
x: a Tensor of shape (*, num_channels)
num_groups: the number of groups of channels, a number >=1 that divides num_channels
Returns:
Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and
greater than 1.0 otherwise.
"""
assert x.dtype != torch.float16
x = x.reshape(-1, x.shape[-1])
(num_frames, num_channels) = x.shape
assert num_channels % num_groups == 0
channels_per_group = num_channels // num_groups
x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1)
# x now has shape (num_groups, num_frames, channels_per_group)
# subtract the mean so we use the centered, not uncentered, covariance.
# My experience has been that when we "mess with the gradients" like this,
# it's better not do anything that tries to move the mean around, because
# that can easily cause instability.
x = x - x.mean(dim=1, keepdim=True)
# x_covar: (num_groups, channels_per_group, channels_per_group)
x_covar = torch.matmul(x.transpose(1, 2), x)
x_covar_mean_diag = _diag(x_covar).mean()
# the following expression is what we'd get if we took the matrix product
# of each covariance and measured the mean of its trace, i.e.
# the same as _diag(torch.matmul(x_covar, x_covar)).mean().
x_covarsq_mean_diag = (x_covar ** 2).sum() / (
num_groups * channels_per_group
)
# this metric will be >= 1.0; the larger it is, the less 'white' the data was.
metric = x_covarsq_mean_diag / (x_covar_mean_diag ** 2 + 1.0e-20)
return metric
class WhiteningPenaltyFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
num_groups: int,
whitening_limit: float,
grad_scale: float,
) -> Tensor:
ctx.save_for_backward(x)
ctx.num_groups = num_groups
ctx.whitening_limit = whitening_limit
ctx.grad_scale = grad_scale
return x
@staticmethod
def backward(ctx, x_grad: Tensor):
(x_orig,) = ctx.saved_tensors
with torch.enable_grad():
with torch.cuda.amp.autocast(enabled=False):
x_detached = x_orig.to(torch.float32).detach()
x_detached.requires_grad = True
metric = _whitening_metric(x_detached, ctx.num_groups)
if random.random() < 0.005 or __name__ == "__main__":
logging.info(
f"Whitening: num_groups={ctx.num_groups}, num_channels={x_orig.shape[-1]}, "
f"metric={metric.item():.2f} vs. limit={ctx.whitening_limit}"
)
(metric - ctx.whitening_limit).relu().backward()
penalty_grad = x_detached.grad
scale = ctx.grad_scale * (
x_grad.to(torch.float32).norm()
/ (penalty_grad.norm() + 1.0e-20)
)
penalty_grad = penalty_grad * scale
return x_grad + penalty_grad.to(x_grad.dtype), None, None, None
class Whiten(nn.Module):
def __init__(
self,
num_groups: int,
whitening_limit: float,
prob: Union[float, Tuple[float, float]],
grad_scale: float,
):
"""
Args:
num_groups: the number of groups to divide the channel dim into before
whitening. We will attempt to make the feature covariance
within each group, after mean subtraction, as "white" as possible,
while having the same trace across all groups.
whitening_limit: a value greater than 1.0, that dictates how much
freedom we have to violate the constraints. 1.0 would mean perfectly
white, with exactly the same trace across groups; larger values
give more freedom. E.g. 2.0.
prob: the probability with which we apply the gradient modification
(also affects the grad scale). May be supplied as a float,
or as a pair (min_prob, max_prob)
grad_scale: determines the scale on the gradient term from this object,
relative to the rest of the gradient on the attention weights.
E.g. 0.02 (you may want to use smaller values than this if prob is large)
"""
super(Whiten, self).__init__()
assert num_groups >= 1
assert whitening_limit >= 1
assert grad_scale >= 0
self.num_groups = num_groups
self.whitening_limit = whitening_limit
if isinstance(prob, float):
assert 0 < prob <= 1
self.prob = prob
else:
(self.min_prob, self.max_prob) = prob
assert 0 < self.min_prob < self.max_prob <= 1
self.prob = self.max_prob
self.grad_scale = grad_scale
def forward(self, x: Tensor) -> Tensor:
"""
In the forward pass, this function just returns the input unmodified.
In the backward pass, it will modify the gradients to ensure that the
distribution in each group has close to (lambda times I) as the covariance
after mean subtraction, with the same lambda across groups.
For whitening_limit > 1, there will be more freedom to violate this
constraint.
Args:
x: the input of shape (*, num_channels)
Returns:
x, unmodified. You should make sure
you use the returned value, or the graph will be freed
and nothing will happen in backprop.
"""
if (
not x.requires_grad
or random.random() > self.prob
or self.grad_scale == 0
):
return _no_op(x)
else:
if hasattr(self, "min_prob") and random.random() < 0.25:
# occasionally switch between min_prob and max_prob, based on whether
# we are above or below the threshold.
if (
_whitening_metric(x.to(torch.float32), self.num_groups)
> self.whitening_limit
):
# there would be a change to the grad.
self.prob = self.max_prob
else:
self.prob = self.min_prob
return WhiteningPenaltyFunction.apply(
x, self.num_groups, self.whitening_limit, self.grad_scale
)
class WithLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, y: Tensor):
ctx.y_shape = y.shape
return x
@staticmethod
def backward(ctx, ans_grad: Tensor):
return ans_grad, torch.ones(
ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device
)
def with_loss(x, y):
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x
# returns x but adds y.sum() to the loss function.
return WithLoss.apply(x, y)
def _no_op(x: Tensor) -> Tensor:
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x
else:
# a no-op function that will have a node in the autograd graph,
# to avoid certain bugs relating to backward hooks
return x.chunk(1, dim=-1)[0]
class Identity(torch.nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return _no_op(x)
class MaxEig(torch.nn.Module):
"""
Modifies the backpropped derivatives of a function to try to discourage
that any given direction in activation space accounts for more than
a specified proportion of the covariance (e.g. 0.2).
Args:
num_channels: the number of channels
channel_dim: the dimension/axis corresponding to the channel, e.g.
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
max_var_per_eig: the maximum proportion of the variance of the
features/channels, after mean subtraction, that can come from
any given eigenvalue.
min_prob: the minimum probability with which we apply this during any invocation
of forward(), assuming last time we applied the constraint it was
not active; supplied for speed.
scale: determines the scale with which we modify the gradients, relative
to the existing / unmodified gradients
"""
def __init__(
self,
num_channels: int,
channel_dim: int,
max_var_per_eig: float = 0.2,
min_prob: float = 0.01,
scale: float = 0.01,
):
super(MaxEig, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.scale = scale
assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels
self.max_var_per_eig = max_var_per_eig
# we figure out the dominant direction using the power method: starting with
# a random vector, keep multiplying by the covariance and renormalizing.
with torch.no_grad():
# arbitrary.. would use randn() but want to leave the rest of the model's
# random parameters unchanged for comparison
direction = torch.arange(num_channels).to(torch.float)
direction = direction / direction.norm()
self.register_buffer("max_eig_direction", direction)
self.min_prob = min_prob
# cur_prob is the current probability we'll use to apply the ActivationBalancer.
# We'll regress this towards prob, each tiem we try to apply it and it is not
# active.
self.cur_prob = 1.0
def forward(self, x: Tensor) -> Tensor:
if (
torch.jit.is_scripting()
or self.max_var_per_eig <= 0
or random.random() > self.cur_prob
or torch.jit.is_tracing()
):
return _no_op(x)
with torch.cuda.amp.autocast(enabled=False):
eps = 1.0e-20
orig_x = x
x = x.to(torch.float32)
with torch.no_grad():
x = x.transpose(self.channel_dim, -1).reshape(
-1, self.num_channels
)
x = x - x.mean(dim=0)
new_direction, coeffs = self._find_direction_coeffs(
x, self.max_eig_direction
)
x_var = (x ** 2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual ** 2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction.
variance_proportion = (x_var - x_residual_var) / (
x_var + 1.0e-20
)
# ensure new direction is nonzero even if x == 0, by including `direction`.
self._set_direction(
0.1 * self.max_eig_direction + new_direction
)
if random.random() < 0.01 or __name__ == "__main__":
logging.info(
f"variance_proportion = {variance_proportion.item()}, shape={tuple(orig_x.shape)}, cur_prob={self.cur_prob}"
)
if variance_proportion >= self.max_var_per_eig:
# The constraint is active. Note, we should quite rarely
# reach here, only near the beginning of training if we are
# starting to diverge, should this constraint be active.
cur_prob = self.cur_prob
self.cur_prob = (
1.0 # next time, do the update with probability 1.0.
)
return MaxEigLimiterFunction.apply(
orig_x, coeffs, new_direction, self.channel_dim, self.scale
)
else:
# let self.cur_prob exponentially approach self.min_prob, as
# long as the constraint is inactive.
self.cur_prob = 0.75 * self.cur_prob + 0.25 * self.min_prob
return orig_x
def _set_direction(self, direction: Tensor):
"""
Sets self.max_eig_direction to a normalized version of `direction`
"""
direction = direction.detach()
direction = direction / direction.norm()
direction_sum = direction.sum().item()
if direction_sum - direction_sum == 0: # no inf/nan
self.max_eig_direction[:] = direction
else:
logging.info(
f"Warning: sum of direction in MaxEig is {direction_sum}, "
"num_channels={self.num_channels}, channel_dim={self.channel_dim}"
)
def _find_direction_coeffs(
self, x: Tensor, prev_direction: Tensor
) -> Tuple[Tensor, Tensor, Tensor]:
"""
Figure out (an approximation to) the proportion of the variance of a set of
feature vectors that can be attributed to the top eigen-direction.
Args:
x: a Tensor of shape (num_frames, num_channels), with num_frames > 1.
prev_direction: a Tensor of shape (num_channels,), that is our previous estimate
of the top eigen-direction, or a random direction if this is the first
iteration. Does not have to be normalized, but should be nonzero.
Returns: (cur_direction, coeffs), where:
cur_direction: a Tensor of shape (num_channels,) that is the current
estimate of the top eigen-direction.
coeffs: a Tensor of shape (num_frames, 1) that minimizes, or
approximately minimizes, (x - coeffs * cur_direction).norm()
"""
(num_frames, num_channels) = x.shape
assert num_channels > 1 and num_frames > 1
assert prev_direction.shape == (num_channels,)
# `coeffs` are the coefficients of `prev_direction` in x.
# actually represent the coeffs up to a constant positive factor.
coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10
cur_direction = (x * coeffs).sum(dim=0) / (
(coeffs ** 2).sum() + 1.0e-20
)
return cur_direction, coeffs
class DoubleSwishFunction(torch.autograd.Function):
"""
double_swish(x) = x * torch.sigmoid(x-1)
This is a definition, originally motivated by its close numerical
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
Memory-efficient derivative computation:
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
Now, s'(x) = s(x) * (1-s(x)).
double_swish'(x) = x * s'(x) + s(x).
= x * s(x) * (1-s(x)) + s(x).
= double_swish(x) * (1-s(x)) + s(x)
... so we just need to remember s(x) but not x itself.
"""
@staticmethod
def forward(ctx, x: Tensor) -> Tensor:
requires_grad = x.requires_grad
x_dtype = x.dtype
if x.dtype == torch.float16:
x = x.to(torch.float32)
s = torch.sigmoid(x - 1.0)
y = x * s
if requires_grad:
deriv = y * (1 - s) + s
# notes on derivative of x * sigmoid(x - 1):
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
# floors), should be expectation-preserving.
floor = -0.043637
ceil = 1.2
d_scaled = (deriv - floor) * (
255.0 / (ceil - floor)
) + torch.rand_like(deriv)
if __name__ == "__main__":
# for self-testing only.
assert d_scaled.min() >= 0.0
assert d_scaled.max() < 256.0
d_int = d_scaled.to(torch.uint8)
ctx.save_for_backward(d_int)
if x.dtype == torch.float16 or torch.is_autocast_enabled():
y = y.to(torch.float16)
return y
@staticmethod
def backward(ctx, y_grad: Tensor) -> Tensor:
(d,) = ctx.saved_tensors
# the same constants as used in forward pass.
floor = -0.043637
ceil = 1.2
d = d * ((ceil - floor) / 255.0) + floor
return y_grad * d
class DoubleSwish(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
that we approximate closely with x * sigmoid(x-1).
"""
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x * torch.sigmoid(x - 1.0)
return DoubleSwishFunction.apply(x)
def BalancedDoubleSwish(
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
) -> nn.Sequential:
"""
ActivationBalancer -> DoubleSwish
"""
balancer = ActivationBalancer(
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
)
return nn.Sequential(
balancer,
DoubleSwish(),
)
def _test_max_eig():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"proportion = {proportion}")
x = torch.randn(100, 128)
direction = torch.randn(128)
coeffs = torch.randn(100, 1)
x += proportion * direction * coeffs
x.requires_grad = True
num_channels = 128
m = MaxEig(
num_channels, 1, 0.5, scale=0.1 # channel_dim # max_var_per_eig
) # grad_scale
for _ in range(4):
y = m(x)
y_grad = torch.randn_like(x)
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad, atol=1.0e-02)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)
def _test_whiten():
for proportion in [0.1, 0.5, 10.0]:
logging.info(f"_test_whiten(): proportion = {proportion}")
x = torch.randn(100, 128)
direction = torch.randn(128)
coeffs = torch.randn(100, 1)
x += proportion * direction * coeffs
x.requires_grad = True
num_channels = 128
m = Whiten(
1, 5.0, prob=1.0, grad_scale=0.1 # num_groups # whitening_limit,
) # grad_scale
for _ in range(4):
y = m(x)
y_grad = torch.randn_like(x)
y.backward(gradient=y_grad)
if proportion < 0.2:
assert torch.allclose(x.grad, y_grad)
elif proportion > 1.0:
assert not torch.allclose(x.grad, y_grad)
def _test_activation_balancer_sign():
probs = torch.arange(0, 1, 0.01)
N = 1000
x = 1.0 * (
(2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0
)
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
probs.numel(),
channel_dim=0,
min_positive=0.05,
max_positive=0.95,
max_factor=0.2,
min_abs=0.0,
)
y_grad = torch.sign(torch.randn(probs.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_sign: x = ", x)
print("_test_activation_balancer_sign: y grad = ", y_grad)
print("_test_activation_balancer_sign: x grad = ", x.grad)
def _test_activation_balancer_magnitude():
magnitudes = torch.arange(0, 1, 0.01)
N = 1000
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(
-1
)
x = x.detach()
x.requires_grad = True
m = ActivationBalancer(
magnitudes.numel(),
channel_dim=0,
min_positive=0.0,
max_positive=1.0,
max_factor=0.2,
min_abs=0.2,
max_abs=0.8,
min_prob=1.0,
)
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
y = m(x)
y.backward(gradient=y_grad)
print("_test_activation_balancer_magnitude: x = ", x)
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
def _test_basic_norm():
num_channels = 128
m = BasicNorm(num_channels=num_channels, channel_dim=1)
x = torch.randn(500, num_channels)
y = m(x)
assert y.shape == x.shape
x_rms = (x ** 2).mean().sqrt()
y_rms = (y ** 2).mean().sqrt()
print("x rms = ", x_rms)
print("y rms = ", y_rms)
assert y_rms < x_rms
assert y_rms > 0.5 * x_rms
def _test_double_swish_deriv():
x = torch.randn(10, 12, dtype=torch.double) * 3.0
x.requires_grad = True
m = DoubleSwish()
tol = (1.2 - (-0.043637)) / 255.0
torch.autograd.gradcheck(m, x, atol=tol)
# for self-test.
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0
x.requires_grad = True
y = m(x)
def _test_softmax():
a = torch.randn(2, 10, dtype=torch.float64)
b = a.clone()
a.requires_grad = True
b.requires_grad = True
a.softmax(dim=1)[:, 0].sum().backward()
print("a grad = ", a.grad)
softmax(b, dim=1)[:, 0].sum().backward()
print("b grad = ", b.grad)
assert torch.allclose(a.grad, b.grad)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_softmax()
_test_whiten()
_test_max_eig()
_test_activation_balancer_sign()
_test_activation_balancer_magnitude()
_test_basic_norm()
_test_double_swish_deriv()
|