Spaces:
Build error
Build error
PeteBleackley
commited on
Commit
·
6eb15d0
1
Parent(s):
3e66483
Configured gradio app for training
Browse files- app.py +14 -2
- scripts.py +8 -9
app.py
CHANGED
@@ -7,9 +7,21 @@ Created on Wed Oct 11 10:26:15 2023
|
|
7 |
"""
|
8 |
|
9 |
import gradio as gr
|
|
|
|
|
10 |
|
11 |
def greet(name):
|
12 |
return "Hello " + name + "!!"
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"""
|
8 |
|
9 |
import gradio as gr
|
10 |
+
import scripts
|
11 |
+
import pandas
|
12 |
|
13 |
def greet(name):
|
14 |
return "Hello " + name + "!!"
|
15 |
|
16 |
+
def train():
|
17 |
+
history = scripts.train_models('PlayfulTechnology')
|
18 |
+
return pandas.DataFrame(history).plot.line(subplots=True)
|
19 |
+
|
20 |
+
|
21 |
+
with gr.Blocks() as trainer:
|
22 |
+
training_button = gr.Button(value="Train models")
|
23 |
+
loss_plot = gr.Plot()
|
24 |
+
training_button.click(train,inputs=[],outputs=[loss_plot])
|
25 |
+
|
26 |
+
trainer.launch()
|
27 |
+
|
scripts.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
|
2 |
import os
|
3 |
import argparse
|
4 |
-
import json
|
5 |
import numpy
|
6 |
import tokenizers
|
7 |
import transformers
|
@@ -21,6 +20,7 @@ import scipy.stats
|
|
21 |
import scipy.spatial
|
22 |
import seaborn
|
23 |
import tqdm
|
|
|
24 |
|
25 |
class SequenceCrossEntropyLoss(torch.nn.Module):
|
26 |
def __init__(self):
|
@@ -131,7 +131,7 @@ def prepare_training_datasets():
|
|
131 |
reasoning.to_csv('corpora/reasoning_train.csv')
|
132 |
consistency.to_csv('corpora/consistency.csv')
|
133 |
|
134 |
-
def train_models(path):
|
135 |
tokenizer = tokenizers.Tokenizer.from_pretrained('roberta-base')
|
136 |
trainer = qarac.models.QaracTrainerModel.QaracTrainerModel('roberta-base',
|
137 |
tokenizer)
|
@@ -146,10 +146,11 @@ def train_models(path):
|
|
146 |
reasoning='corpora/reasoning_train.csv',
|
147 |
consistency='corpora/consistency.csv')
|
148 |
n_batches = len(training_data)
|
149 |
-
history =
|
150 |
for epoch in range(10):
|
151 |
print("Epoch",epoch)
|
152 |
-
|
|
|
153 |
for (batch,(X,Y)) in enumerate(tqdm.tqdm(training_data)):
|
154 |
prediction = trainer(X['all_text'],
|
155 |
X['offset_text'],
|
@@ -165,16 +166,14 @@ def train_models(path):
|
|
165 |
optimizer.step()
|
166 |
optimizer.zero_grad()
|
167 |
if batch % 1024 == 0 or batch == n_batches-1:
|
168 |
-
|
169 |
-
|
170 |
scheduler.step()
|
171 |
-
history.append(epoch_history)
|
172 |
-
with open('training_history.json','w') as jsonfile:
|
173 |
-
json.dump(history,jsonfile)
|
174 |
huggingface_hub.login(token=os.environ['HUGGINGFACE_TOKEN'])
|
175 |
trainer.question_encoder.push_to_hub('{}/qarac-roberta-question-encoder'.format(path))
|
176 |
trainer.answer_encoder.push_to_hub('{}/qarac-roberta-answer-encoder'.format(path))
|
177 |
trainer.decoder.push_to_hub('{}/qarac-roberta-decoder'.format(path))
|
|
|
178 |
|
179 |
|
180 |
def test_encode_decode(path):
|
|
|
1 |
|
2 |
import os
|
3 |
import argparse
|
|
|
4 |
import numpy
|
5 |
import tokenizers
|
6 |
import transformers
|
|
|
20 |
import scipy.spatial
|
21 |
import seaborn
|
22 |
import tqdm
|
23 |
+
import gradio
|
24 |
|
25 |
class SequenceCrossEntropyLoss(torch.nn.Module):
|
26 |
def __init__(self):
|
|
|
131 |
reasoning.to_csv('corpora/reasoning_train.csv')
|
132 |
consistency.to_csv('corpora/consistency.csv')
|
133 |
|
134 |
+
def train_models(path,progress=gradio.Progress(track_tqdm=True)):
|
135 |
tokenizer = tokenizers.Tokenizer.from_pretrained('roberta-base')
|
136 |
trainer = qarac.models.QaracTrainerModel.QaracTrainerModel('roberta-base',
|
137 |
tokenizer)
|
|
|
146 |
reasoning='corpora/reasoning_train.csv',
|
147 |
consistency='corpora/consistency.csv')
|
148 |
n_batches = len(training_data)
|
149 |
+
history = {}
|
150 |
for epoch in range(10):
|
151 |
print("Epoch",epoch)
|
152 |
+
epoch_label = 'Epoch {}'.format(epoch)
|
153 |
+
epoch_data = {}
|
154 |
for (batch,(X,Y)) in enumerate(tqdm.tqdm(training_data)):
|
155 |
prediction = trainer(X['all_text'],
|
156 |
X['offset_text'],
|
|
|
166 |
optimizer.step()
|
167 |
optimizer.zero_grad()
|
168 |
if batch % 1024 == 0 or batch == n_batches-1:
|
169 |
+
epoch_data[batch] = loss.item()
|
170 |
+
history[epoch_label] = epoch_data
|
171 |
scheduler.step()
|
|
|
|
|
|
|
172 |
huggingface_hub.login(token=os.environ['HUGGINGFACE_TOKEN'])
|
173 |
trainer.question_encoder.push_to_hub('{}/qarac-roberta-question-encoder'.format(path))
|
174 |
trainer.answer_encoder.push_to_hub('{}/qarac-roberta-answer-encoder'.format(path))
|
175 |
trainer.decoder.push_to_hub('{}/qarac-roberta-decoder'.format(path))
|
176 |
+
return history
|
177 |
|
178 |
|
179 |
def test_encode_decode(path):
|