Spaces:
Build error
Build error
PeteBleackley
commited on
Commit
·
75ef467
1
Parent(s):
47a7fc3
Corpus iterator for BNC
Browse files- requirements.txt +3 -0
- src/corpora/BNCorpus.py +71 -0
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
keras
|
2 |
keras_nlp
|
3 |
tensorflow
|
|
|
|
|
|
|
|
1 |
keras
|
2 |
keras_nlp
|
3 |
tensorflow
|
4 |
+
numpy
|
5 |
+
nltk
|
6 |
+
tokenizers
|
src/corpora/BNCorpus.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Thu Aug 24 10:38:48 2023
|
5 |
+
|
6 |
+
@author: peter
|
7 |
+
"""
|
8 |
+
import numpy
|
9 |
+
import numpy.random
|
10 |
+
import nltk.corpus
|
11 |
+
|
12 |
+
def detokenize(sentences):
|
13 |
+
return ' '.join([''.join(sentence)
|
14 |
+
for sentence in sentences])
|
15 |
+
|
16 |
+
class BNCorpus(object):
|
17 |
+
|
18 |
+
def __init__(self,fileids=None,tokenizer=None,task=None):
|
19 |
+
self.bnc = nltk.corpus.reader.bnc.BNCCorpusReader('BNC/Texts', fileids=r'[A-K]/\w*/\w*\.xml')
|
20 |
+
self.file_ids = self.bnc.fileids() if fileids is None else fileids
|
21 |
+
self.n_docs = len(self.file_ids)
|
22 |
+
self.rng = numpy.random.default_rng()
|
23 |
+
self.tokenizer = tokenizer
|
24 |
+
self.task = task
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return self.n_docs
|
28 |
+
|
29 |
+
def split(self,p=0.8):
|
30 |
+
n = int(p*self.n_docs)
|
31 |
+
self.rng.shuffle(self.file_ids)
|
32 |
+
train = BNCorpus(self.fileids[:n],self.tokenizer,self.task)
|
33 |
+
test = BNCorpus(self.fileids[n:],self.tokenizer,self.task)
|
34 |
+
return (train,test)
|
35 |
+
|
36 |
+
def __iter__(self):
|
37 |
+
self.rng.shuffle(self.file_ids)
|
38 |
+
for fileid in self.file_ids:
|
39 |
+
doc = self.bnc.sents(fileid,strip_space=False)
|
40 |
+
if self.task is None:
|
41 |
+
yield detokenize(doc)
|
42 |
+
elif self.task=='encode':
|
43 |
+
yield self.endoder_example(doc)
|
44 |
+
else:
|
45 |
+
yield self.decoder_example(doc)
|
46 |
+
|
47 |
+
def encoder_example(self,doc):
|
48 |
+
masked_sentences = []
|
49 |
+
sample_weights = []
|
50 |
+
for sentence in doc:
|
51 |
+
cp = sentence[:]
|
52 |
+
n = len(sentence)
|
53 |
+
weights = numpy.zeros(n)
|
54 |
+
k = self.rng.integers(n)
|
55 |
+
cp[k] = '[MASK] '
|
56 |
+
masked_sentences.append(cp)
|
57 |
+
weights[k] = 1
|
58 |
+
sample_weights.append(weights)
|
59 |
+
return (self.tokenizer.encode(detokenize(masked_sentences)),
|
60 |
+
self.tokenizer.encode(detokenize(doc)),
|
61 |
+
numpy.concatenate(sample_weights))
|
62 |
+
|
63 |
+
def decoder_sample(self,doc):
|
64 |
+
x = ['START'] + doc
|
65 |
+
y = doc + ['END']
|
66 |
+
sample_weights = [numpy.zeros(len(sentence)) if i==0
|
67 |
+
else numpy.ones(len(sentence))
|
68 |
+
for (i,sentence) in enumerate(y)]
|
69 |
+
return (self.tokenizer.encode(detokenize(x)),
|
70 |
+
self.tokenizer.encode(detokenize(y)),
|
71 |
+
numpy.concatenate(sample_weights))
|