Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Load the model and tokenizer | |
# def load_model(): | |
# # Load the NuminaMath-72B-CoT model | |
# pipe = pipeline( | |
# "text-generation", | |
# model="AI-MO/NuminaMath-72B-CoT", | |
# torch_dtype="auto", | |
# device_map="auto" # Automatically map to available GPU/CPU | |
# ) | |
# return pipe | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
def load_model(): | |
# tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-72B-CoT") | |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-CoT") | |
model = AutoModelForCausalLM.from_pretrained( | |
# "AI-MO/NuminaMath-72B-CoT", | |
"AI-MO/NuminaMath-7B-CoT", | |
device_map="auto", # Automatically map to available GPU | |
# offload_folder="offload" # Offload unused parts to disk | |
load_in_8bit=True # Load model in 8-bit precision | |
) | |
return pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Initialize the pipeline | |
model_pipeline = load_model() | |
# Define the function to process inputs | |
def solve_math_question(prompt): | |
# Generate output using the model | |
outputs = model_pipeline(prompt, max_new_tokens=300, do_sample=False) | |
return outputs[0]["generated_text"] | |
# Define the Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("# NuminaMath-72B-CoT Math Question Solver") | |
gr.Markdown( | |
"Ask a math-related question, and the model will attempt to solve it with reasoning!" | |
) | |
with gr.Row(): | |
question = gr.Textbox( | |
label="Your Math Question", | |
placeholder="what is 2+2?", | |
) | |
output = gr.Textbox(label="Model Output") | |
submit_button = gr.Button("Solve") | |
submit_button.click(solve_math_question, inputs=question, outputs=output) | |
# Launch the app | |
app.launch() |