File size: 4,728 Bytes
bb519eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a1d755
bb519eb
 
 
8a1d755
c946941
bb519eb
8a1d755
bb519eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a1d755
bb519eb
 
 
e1f30ae
 
bb519eb
e1f30ae
 
 
bb519eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
from transformers import pipeline
import requests
import json
import edge_tts
import asyncio
import tempfile
import os
import inflect
from huggingface_hub import InferenceClient
import re
import time
from streaming_stt_nemo import Model

default_lang = "en"

engines = { default_lang: Model(default_lang) }

def transcribe(audio):
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "<s> Sasha is a friendly and enthusiastic person, born in Florida, United States. She enjoys casual and fun conversations. She responds in a brief and natural way, like a real person would. Feel free to ask questions, tell jokes, or just chat with her. [USER]"

def model(text):
    generate_kwargs = dict(
        temperature=1.0,
        max_new_tokens=128, #def 512 very long sometimes, 256 semi large
        top_p=0.95,
        repetition_penalty=0.9,
        do_sample=True,
        seed=42,
    )
    
    formatted_prompt = system_instructions1 + text + "[SASHA]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text

    return output

async def respond(audio):
    user = transcribe(audio)
    reply = model(user)
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

DESCRIPTION = """ # <center><b>SASHA ✨</b></center>
                 ### <center>Your AI Assistant, Sasha Bingham</center>
                 ### <center>Let's chat!</center>
                 """

MORE = """ ## TRY Other Models
                 ### Instant Video: Create Amazing Videos in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Video
                 ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
                 """

BETA = """ ### Voice Chat (BETA)"""

FAST = """## Fastest Model"""

Complex = """## Best in Complex Question"""

Detail = """## Best for Detailed Generation or Long Answers"""

base_loaded = "mistralai/Mixtral-8x7B-Instruct-v0.1"

client1 = InferenceClient(base_loaded)

system_instructions1 = "[SYSTEM] Sasha is a friendly and enthusiastic person, born in Florida, United States. She enjoys casual and fun conversations. She responds in a brief and natural way, like a real person would. Feel free to ask questions, tell jokes, or just chat with her. [USER]"

async def generate1(prompt):
    generate_kwargs = dict(
        temperature=1.0,
        max_new_tokens=128, #def 512 very long sometimes, 256 semi large
        top_p=0.95,
        repetition_penalty=0.9,
        do_sample=True,
        seed=42,
    )
    formatted_prompt = system_instructions1 + prompt + "[SASHA]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text

    communicate = edge_tts.Communicate(output)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

with gr.Blocks(css="style.css") as demo:    
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        input = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False)
        output = gr.Audio(label="SASHA", type="filepath",
                        interactive=False,
                        autoplay=True,
                        elem_classes="audio")
        gr.Interface(
            fn=respond, 
            inputs=[input],
                outputs=[output], live=True) 
    gr.Markdown(FAST)
    with gr.Row():
        user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
        input_text = gr.Textbox(label="Input Text", elem_id="important")
        output_audio = gr.Audio(label="SASHA", type="filepath",
                        interactive=False,
                        autoplay=True,
                        elem_classes="audio")
    with gr.Row():
        translate_btn = gr.Button("Response")
        translate_btn.click(fn=generate1, inputs=user_input,
                            outputs=output_audio, api_name="translate")  

gr.Markdown(MORE)

if __name__ == "__main__":
    demo.queue(max_size=200).launch()