File size: 5,610 Bytes
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03824b2
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03824b2
 
 
 
 
 
 
 
e976963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from multiprocessing import cpu_count
from pathlib import Path

import torch
from fairseq import checkpoint_utils
from scipy.io import wavfile

from infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from my_utils import load_audio
from vc_infer_pipeline import VC

BASE_DIR = Path(__file__).resolve().parent.parent


class Config:
    def __init__(self, device, is_half):
        self.device = device
        self.is_half = is_half
        self.n_cpu = 0
        self.gpu_name = None
        self.gpu_mem = None
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    def device_config(self) -> tuple:
        if torch.cuda.is_available():
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            if (
                    ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
                    or "P40" in self.gpu_name.upper()
                    or "1060" in self.gpu_name
                    or "1070" in self.gpu_name
                    or "1080" in self.gpu_name
            ):
                print("16 series/10 series P40 forced single precision")
                self.is_half = False
                for config_file in ["32k.json", "40k.json", "48k.json"]:
                    with open(BASE_DIR / "src" / "configs" / config_file, "r") as f:
                        strr = f.read().replace("true", "false")
                    with open(BASE_DIR / "src" / "configs" / config_file, "w") as f:
                        f.write(strr)
                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)
            else:
                self.gpu_name = None
            self.gpu_mem = int(
                torch.cuda.get_device_properties(i_device).total_memory
                / 1024
                / 1024
                / 1024
                + 0.4
            )
            if self.gpu_mem <= 4:
                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
                    strr = f.read().replace("3.7", "3.0")
                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
                    f.write(strr)

        elif torch.backends.mps.is_available():
            print("No supported N-card found, use MPS for inference")
            self.device = "mps"
        else:
            print("No supported N-card found, use CPU for inference")
            self.device = "cpu"
            self.is_half = True

        if self.n_cpu == 0:
            self.n_cpu = cpu_count()

        if self.is_half:
            # 6G memory config
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            # 5G memory config
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem != None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32

        return x_pad, x_query, x_center, x_max


def load_hubert(device, is_half, model_path):
    models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([model_path], suffix='', )
    hubert = models[0]
    hubert = hubert.to(device)

    if is_half:
        hubert = hubert.half()
    else:
        hubert = hubert.float()

    hubert.eval()
    return hubert


def get_vc(device, is_half, config, model_path):
    cpt = torch.load(model_path, map_location='cpu')
    if "config" not in cpt or "weight" not in cpt:
        raise ValueError(f'Incorrect format for {model_path}. Use a voice model trained using RVC v2 instead.')

    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")

    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])

    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(device)

    if is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()

    vc = VC(tgt_sr, config)
    return cpt, version, net_g, tgt_sr, vc


def rvc_infer(
    index_path,
    index_rate,
    input_path,
    output_path,
    pitch_change,
    f0_method,
    cpt,
    version,
    net_g,
    filter_radius,
    tgt_sr,
    rms_mix_rate,
    protect,
    crepe_hop_length,
    vc,
    hubert_model
):
    audio = load_audio(input_path, 16000)
    times = [0, 0, 0]
    if_f0 = cpt.get('f0', 1)
    audio_opt = vc.pipeline(
        hubert_model,
        net_g,
        0,
        audio,
        input_path,
        times,
        pitch_change,
        f0_method,
        index_path,
        index_rate,
        if_f0,
        filter_radius,
        tgt_sr,
        0,
        rms_mix_rate,
        version,
        protect,
        crepe_hop_length
    )
    wavfile.write(output_path, tgt_sr, audio_opt)