Spaces:
Running
Running
File size: 6,727 Bytes
1d000a8 4b5ced5 1d000a8 ff61c28 1d000a8 ff61c28 1d000a8 4b5ced5 1d000a8 ff61c28 1d000a8 24fd9c5 1d000a8 4b5ced5 1d000a8 4b5ced5 1d000a8 4b5ced5 1d000a8 4b5ced5 1d000a8 4b5ced5 1d000a8 4b5ced5 ff61c28 4b5ced5 ff61c28 4b5ced5 1d000a8 c9496c6 1d000a8 988389b 1d000a8 4b5ced5 1d000a8 ff61c28 1d000a8 ff61c28 1d000a8 513c24f 1d000a8 4b5ced5 1d000a8 c9496c6 1d000a8 4b5ced5 1d000a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import librosa
import librosa.display
import gradio as gr
import soundfile as sf
import os
# Function for creating a spectrogram image with text
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
if os.path.exists(font_path):
font = ImageFont.truetype(font_path, max_font_size)
else:
font = ImageFont.load_default()
image = Image.new('L', (base_width, height), 'black')
draw = ImageDraw.Draw(image)
text_width = 0
for char in text:
text_bbox = draw.textbbox((0, 0), char, font=font)
text_width += text_bbox[2] - text_bbox[0] + letter_spacing
text_width -= letter_spacing
if text_width + margin * 2 > base_width:
width = text_width + margin * 2
else:
width = base_width
image = Image.new('L', (width, height), 'black')
draw = ImageDraw.Draw(image)
text_x = (width - text_width) // 2
text_y = (height - (text_bbox[3] - text_bbox[1])) // 2
for char in text:
draw.text((text_x, text_y), char, font=font, fill='white')
char_bbox = draw.textbbox((0, 0), char, font=font)
text_x += char_bbox[2] - char_bbox[0] + letter_spacing
image = np.array(image)
image = np.where(image > 0, 255, image)
return image
# Converting an image to audio
def spectrogram_image_to_audio(image, sr=22050):
flipped_image = np.flipud(image)
S = flipped_image.astype(np.float32) / 255.0 * 100.0
y = librosa.griffinlim(S)
return y
# Function for creating an audio file and spectrogram from text
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
y = spectrogram_image_to_audio(spec_image)
audio_path = 'output.wav'
sf.write(audio_path, y, 22050)
image_path = 'spectrogram.png'
plt.imsave(image_path, spec_image, cmap='gray')
return audio_path, image_path
# Function for displaying the spectrogram of an audio file
def display_audio_spectrogram(audio_path):
y, sr = librosa.load(audio_path)
S = librosa.feature.melspectrogram(y=y, sr=sr)
S_dB = librosa.power_to_db(S, ref=np.max)
plt.figure(figsize=(10, 4))
librosa.display.specshow(S_dB)
plt.tight_layout()
spectrogram_path = 'uploaded_spectrogram.png'
plt.savefig(spectrogram_path)
plt.close()
return spectrogram_path
# Converting a downloaded image to an audio spectrogram
def image_to_spectrogram_audio(image_path, sr=22050):
image = Image.open(image_path).convert('L')
image = np.array(image)
y = spectrogram_image_to_audio(image, sr)
img2audio_path = 'image_to_audio_output.wav'
sf.write(img2audio_path, y, sr)
return img2audio_path
# Gradio interface
with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as iface:
with gr.Group():
with gr.Row(variant='panel'):
with gr.Column():
gr.HTML("<center><h2><a href='https://t.me/pol1trees'>Telegram Channel</a></h2></center>")
with gr.Column():
gr.HTML("<center><h2><a href='https://t.me/+GMTP7hZqY0E4OGRi'>Telegram Chat</a></h2></center>")
with gr.Column():
gr.HTML("<center><h2><a href='https://www.youtube.com/channel/UCHb3fZEVxUisnqLqCrEM8ZA'>YouTube</a></h2></center>")
with gr.Column():
gr.HTML("<center><h2><a href='https://github.com/Bebra777228/Audio-Steganography'>GitHub</a></h2></center>")
with gr.Tab("Text to Spectrogram"):
with gr.Group():
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text")
with gr.Row(variant='panel'):
base_width = gr.Slider(value=512, label="Image Width", visible=False)
height = gr.Slider(value=256, label="Image Height", visible=False)
max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size")
margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent")
letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing")
generate_button = gr.Button("Generate")
with gr.Column(variant='panel'):
with gr.Group():
output_audio = gr.Audio(type="filepath", label="Generated audio")
output_image = gr.Image(type="filepath", label="Spectrogram")
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
print("\n", text)
return create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
generate_button.click(
gradio_interface_fn,
inputs=[text, base_width, height, max_font_size, margin, letter_spacing],
outputs=[output_audio, output_image]
)
with gr.Tab("Image to Spectrogram"):
with gr.Group():
with gr.Row(variant='panel'):
upload_image = gr.Image(type="filepath", label="Upload image")
convert_button = gr.Button("Convert to audio")
with gr.Column(variant='panel'):
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
def gradio_image_to_audio_fn(upload_image):
print(upload_image)
return image_to_spectrogram_audio(upload_image)
convert_button.click(
gradio_image_to_audio_fn,
inputs=[upload_image],
outputs=[output_audio_from_image]
)
with gr.Tab("Audio Spectrogram"):
with gr.Group():
with gr.Row(variant='panel'):
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
decode_button = gr.Button("Show spectrogram", scale=2)
with gr.Column(variant='panel'):
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
def gradio_decode_fn(upload_audio):
return display_audio_spectrogram(upload_audio)
decode_button.click(
gradio_decode_fn,
inputs=[upload_audio],
outputs=[decoded_image]
)
iface.launch(share=True)
|