File size: 6,727 Bytes
1d000a8
 
 
 
 
 
 
 
 
4b5ced5
1d000a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff61c28
1d000a8
 
 
 
 
 
ff61c28
1d000a8
 
 
 
 
 
 
 
 
4b5ced5
1d000a8
 
 
 
 
 
 
 
 
 
 
 
 
 
ff61c28
1d000a8
 
 
 
24fd9c5
 
 
1d000a8
4b5ced5
 
1d000a8
 
 
 
4b5ced5
1d000a8
4b5ced5
1d000a8
 
 
 
 
4b5ced5
1d000a8
4b5ced5
1d000a8
4b5ced5
 
ff61c28
4b5ced5
ff61c28
4b5ced5
1d000a8
 
c9496c6
 
 
1d000a8
 
988389b
1d000a8
 
 
 
 
 
 
 
4b5ced5
1d000a8
 
ff61c28
 
1d000a8
 
ff61c28
1d000a8
 
513c24f
1d000a8
 
 
 
 
 
 
 
4b5ced5
1d000a8
 
c9496c6
 
1d000a8
 
4b5ced5
1d000a8
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import librosa
import librosa.display
import gradio as gr
import soundfile as sf
import os

# Function for creating a spectrogram image with text
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
    if os.path.exists(font_path):
        font = ImageFont.truetype(font_path, max_font_size)
    else:
        font = ImageFont.load_default()

    image = Image.new('L', (base_width, height), 'black')
    draw = ImageDraw.Draw(image)
    text_width = 0
    for char in text:
        text_bbox = draw.textbbox((0, 0), char, font=font)
        text_width += text_bbox[2] - text_bbox[0] + letter_spacing
    text_width -= letter_spacing

    if text_width + margin * 2 > base_width:
        width = text_width + margin * 2
    else:
        width = base_width

    image = Image.new('L', (width, height), 'black')
    draw = ImageDraw.Draw(image)
    
    text_x = (width - text_width) // 2
    text_y = (height - (text_bbox[3] - text_bbox[1])) // 2
    for char in text:
        draw.text((text_x, text_y), char, font=font, fill='white')
        char_bbox = draw.textbbox((0, 0), char, font=font)
        text_x += char_bbox[2] - char_bbox[0] + letter_spacing
    
    image = np.array(image)
    image = np.where(image > 0, 255, image)
    return image

# Converting an image to audio
def spectrogram_image_to_audio(image, sr=22050):
    flipped_image = np.flipud(image)
    S = flipped_image.astype(np.float32) / 255.0 * 100.0
    y = librosa.griffinlim(S)
    return y

# Function for creating an audio file and spectrogram from text
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
    spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
    y = spectrogram_image_to_audio(spec_image)
    audio_path = 'output.wav'
    sf.write(audio_path, y, 22050)
    image_path = 'spectrogram.png'
    plt.imsave(image_path, spec_image, cmap='gray')
    return audio_path, image_path

# Function for displaying the spectrogram of an audio file
def display_audio_spectrogram(audio_path):
    y, sr = librosa.load(audio_path)
    S = librosa.feature.melspectrogram(y=y, sr=sr)
    S_dB = librosa.power_to_db(S, ref=np.max)

    plt.figure(figsize=(10, 4))
    librosa.display.specshow(S_dB)
    plt.tight_layout()

    spectrogram_path = 'uploaded_spectrogram.png'
    plt.savefig(spectrogram_path)
    plt.close()
    return spectrogram_path

# Converting a downloaded image to an audio spectrogram
def image_to_spectrogram_audio(image_path, sr=22050):
    image = Image.open(image_path).convert('L')
    image = np.array(image)
    y = spectrogram_image_to_audio(image, sr)
    img2audio_path = 'image_to_audio_output.wav'
    sf.write(img2audio_path, y, sr)
    return img2audio_path

# Gradio interface
with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as iface:
    
    with gr.Group():
        with gr.Row(variant='panel'):
            with gr.Column():
                gr.HTML("<center><h2><a href='https://t.me/pol1trees'>Telegram Channel</a></h2></center>")
            with gr.Column():
                gr.HTML("<center><h2><a href='https://t.me/+GMTP7hZqY0E4OGRi'>Telegram Chat</a></h2></center>")
            with gr.Column():
                gr.HTML("<center><h2><a href='https://www.youtube.com/channel/UCHb3fZEVxUisnqLqCrEM8ZA'>YouTube</a></h2></center>")
            with gr.Column():
                gr.HTML("<center><h2><a href='https://github.com/Bebra777228/Audio-Steganography'>GitHub</a></h2></center>")

    with gr.Tab("Text to Spectrogram"):
        with gr.Group():
            text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text")
            with gr.Row(variant='panel'):
                base_width = gr.Slider(value=512, label="Image Width", visible=False)
                height = gr.Slider(value=256, label="Image Height", visible=False)
                max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size")
                margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent")
                letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing")
            generate_button = gr.Button("Generate")
        
        with gr.Column(variant='panel'):
            with gr.Group():
                output_audio = gr.Audio(type="filepath", label="Generated audio")
                output_image = gr.Image(type="filepath", label="Spectrogram")

        def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
            print("\n", text)
            return create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
        
        generate_button.click(
            gradio_interface_fn,
            inputs=[text, base_width, height, max_font_size, margin, letter_spacing],
            outputs=[output_audio, output_image]
        )

    with gr.Tab("Image to Spectrogram"):
        with gr.Group():
            with gr.Row(variant='panel'):
                upload_image = gr.Image(type="filepath", label="Upload image")
                convert_button = gr.Button("Convert to audio")
            
            with gr.Column(variant='panel'):
                output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")

            def gradio_image_to_audio_fn(upload_image):
                print(upload_image)
                return image_to_spectrogram_audio(upload_image)
            
            convert_button.click(
                gradio_image_to_audio_fn,
                inputs=[upload_image],
                outputs=[output_audio_from_image]
            )

    with gr.Tab("Audio Spectrogram"):
        with gr.Group():
            with gr.Row(variant='panel'):
                upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
                decode_button = gr.Button("Show spectrogram", scale=2)
            
            with gr.Column(variant='panel'):
                decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")

            def gradio_decode_fn(upload_audio):
                return display_audio_spectrogram(upload_audio)
            
            decode_button.click(
                gradio_decode_fn,
                inputs=[upload_audio],
                outputs=[decoded_image]
            )

iface.launch(share=True)