Spaces:
Running
Running
Update steganography.py
Browse files- steganography.py +122 -62
steganography.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
|
|
|
|
|
|
4 |
import librosa
|
5 |
import librosa.display
|
6 |
-
import
|
|
|
7 |
import soundfile as sf
|
8 |
-
import
|
9 |
-
import logging
|
10 |
-
import tempfile
|
11 |
|
12 |
# Constants
|
13 |
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
@@ -16,38 +18,52 @@ DEFAULT_SAMPLE_RATE = 22050
|
|
16 |
# Setup logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
18 |
|
|
|
19 |
# Function for creating a spectrogram image with text
|
20 |
-
def text_to_spectrogram_image(
|
|
|
|
|
21 |
try:
|
22 |
font = ImageFont.truetype(DEFAULT_FONT_PATH, max_font_size)
|
23 |
except IOError:
|
24 |
logging.warning(f"Font not found at {DEFAULT_FONT_PATH}. Using default font.")
|
25 |
font = ImageFont.load_default()
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Adjust width and height based on text size
|
33 |
width = max(base_width, text_width + margin * 2)
|
34 |
height = max(height, text_height + margin * 2)
|
35 |
|
36 |
-
image = Image.new(
|
37 |
draw = ImageDraw.Draw(image)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
image = np.array(image)
|
48 |
image = np.where(image > 0, 255, image)
|
49 |
return image
|
50 |
|
|
|
51 |
# Converting an image to audio
|
52 |
def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
53 |
flipped_image = np.flipud(image)
|
@@ -55,30 +71,42 @@ def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
|
55 |
y = librosa.griffinlim(S)
|
56 |
return y
|
57 |
|
|
|
58 |
# Function for creating an audio file and spectrogram from text
|
59 |
-
def create_audio_with_spectrogram(
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
y = spectrogram_image_to_audio(spec_image)
|
62 |
-
|
63 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=
|
64 |
audio_path = temp_audio.name
|
65 |
sf.write(audio_path, y, DEFAULT_SAMPLE_RATE)
|
66 |
-
|
67 |
# Create spectrogram from audio
|
68 |
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
69 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
70 |
plt.figure(figsize=(10, 4))
|
71 |
-
librosa.display.specshow(S_dB, sr=DEFAULT_SAMPLE_RATE, x_axis=
|
72 |
-
plt.axis(
|
73 |
plt.tight_layout(pad=0)
|
74 |
-
|
75 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=
|
76 |
spectrogram_path = temp_spectrogram.name
|
77 |
-
plt.savefig(
|
|
|
|
|
78 |
plt.close()
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
return audio_path, spectrogram_path
|
81 |
|
|
|
82 |
# Function for displaying the spectrogram of an audio file
|
83 |
def display_audio_spectrogram(audio_path):
|
84 |
y, sr = librosa.load(audio_path, sr=None)
|
@@ -86,80 +114,112 @@ def display_audio_spectrogram(audio_path):
|
|
86 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
87 |
|
88 |
plt.figure(figsize=(10, 4))
|
89 |
-
librosa.display.specshow(S_dB, sr=sr, x_axis=
|
90 |
-
plt.axis(
|
91 |
plt.tight_layout(pad=0)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
plt.savefig(spectrogram_path, bbox_inches='tight', pad_inches=0, transparent=True)
|
96 |
plt.close()
|
97 |
-
|
|
|
|
|
98 |
|
99 |
# Converting a downloaded image to an audio spectrogram
|
100 |
def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
101 |
-
image = Image.open(image_path).convert(
|
102 |
image = np.array(image)
|
103 |
y = spectrogram_image_to_audio(image, sr)
|
104 |
-
|
105 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=
|
106 |
img2audio_path = temp_audio.name
|
107 |
sf.write(img2audio_path, y, sr)
|
108 |
return img2audio_path
|
109 |
|
|
|
110 |
# Gradio interface
|
111 |
-
def gradio_interface_fn(
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
114 |
return audio_path, spectrogram_path
|
115 |
|
|
|
116 |
def gradio_image_to_audio_fn(upload_image):
|
117 |
-
logging.info(f"Converting image to audio:\n{upload_image}\n")
|
118 |
return image_to_spectrogram_audio(upload_image)
|
119 |
|
|
|
120 |
def gradio_decode_fn(upload_audio):
|
121 |
-
logging.info(f"Generating spectrogram for audio:\n{upload_audio}\n")
|
122 |
return display_audio_spectrogram(upload_audio)
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Tab("Text to Spectrogram"):
|
126 |
with gr.Group():
|
127 |
-
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text")
|
128 |
-
with gr.Row(variant=
|
129 |
base_width = gr.Slider(value=512, label="Image Width", visible=False)
|
130 |
height = gr.Slider(value=256, label="Image Height", visible=False)
|
131 |
-
max_font_size = gr.Slider(
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
with gr.Group():
|
138 |
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
139 |
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
140 |
|
141 |
-
generate_button.click(
|
|
|
|
|
|
|
|
|
142 |
|
143 |
with gr.Tab("Image to Spectrogram"):
|
144 |
with gr.Group():
|
145 |
with gr.Column():
|
146 |
upload_image = gr.Image(type="filepath", label="Upload image")
|
147 |
-
convert_button = gr.Button(
|
|
|
|
|
148 |
|
149 |
-
with gr.Column(variant=
|
150 |
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
151 |
|
152 |
-
convert_button.click(
|
|
|
|
|
|
|
|
|
153 |
|
154 |
with gr.Tab("Audio Spectrogram"):
|
155 |
with gr.Group():
|
156 |
with gr.Column():
|
157 |
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
|
158 |
-
decode_button = gr.Button(
|
|
|
|
|
159 |
|
160 |
-
with gr.Column(variant=
|
161 |
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
162 |
|
163 |
-
decode_button.click(
|
|
|
|
|
164 |
|
165 |
-
txt2spec.launch(share=True)
|
|
|
1 |
+
import logging
|
2 |
+
import tempfile
|
3 |
+
import os
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
import librosa
|
8 |
import librosa.display
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import numpy as np
|
11 |
import soundfile as sf
|
12 |
+
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
13 |
|
14 |
# Constants
|
15 |
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
|
|
18 |
# Setup logging
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
|
21 |
+
|
22 |
# Function for creating a spectrogram image with text
|
23 |
+
def text_to_spectrogram_image(
|
24 |
+
text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5
|
25 |
+
):
|
26 |
try:
|
27 |
font = ImageFont.truetype(DEFAULT_FONT_PATH, max_font_size)
|
28 |
except IOError:
|
29 |
logging.warning(f"Font not found at {DEFAULT_FONT_PATH}. Using default font.")
|
30 |
font = ImageFont.load_default()
|
31 |
+
except Exception as e:
|
32 |
+
logging.error(f"An error occurred while loading the font: {e}")
|
33 |
+
raise
|
34 |
+
|
35 |
+
draw = ImageDraw.Draw(Image.new("L", (1, 1)))
|
36 |
+
|
37 |
+
text_widths = [
|
38 |
+
draw.textbbox((0, 0), char, font=font)[2] - draw.textbbox((0, 0), char, font=font)[0]
|
39 |
+
for char in text
|
40 |
+
]
|
41 |
+
text_width = sum(text_widths) + letter_spacing * (len(text) - 1)
|
42 |
+
text_height = (
|
43 |
+
draw.textbbox((0, 0), text[0], font=font)[3]
|
44 |
+
- draw.textbbox((0, 0), text[0], font=font)[1]
|
45 |
+
)
|
46 |
|
47 |
# Adjust width and height based on text size
|
48 |
width = max(base_width, text_width + margin * 2)
|
49 |
height = max(height, text_height + margin * 2)
|
50 |
|
51 |
+
image = Image.new("L", (width, height), "black")
|
52 |
draw = ImageDraw.Draw(image)
|
53 |
|
54 |
+
text_start_x = (width - text_width) // 2
|
55 |
+
text_start_y = (height - text_height) // 2
|
56 |
|
57 |
+
current_x = text_start_x
|
58 |
+
for char, char_width in zip(text, text_widths):
|
59 |
+
draw.text((current_x, text_start_y), char, font=font, fill="white")
|
60 |
+
current_x += char_width + letter_spacing
|
61 |
|
62 |
image = np.array(image)
|
63 |
image = np.where(image > 0, 255, image)
|
64 |
return image
|
65 |
|
66 |
+
|
67 |
# Converting an image to audio
|
68 |
def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
69 |
flipped_image = np.flipud(image)
|
|
|
71 |
y = librosa.griffinlim(S)
|
72 |
return y
|
73 |
|
74 |
+
|
75 |
# Function for creating an audio file and spectrogram from text
|
76 |
+
def create_audio_with_spectrogram(
|
77 |
+
text, base_width, height, max_font_size, margin, letter_spacing
|
78 |
+
):
|
79 |
+
spec_image = text_to_spectrogram_image(
|
80 |
+
text, base_width, height, max_font_size, margin, letter_spacing
|
81 |
+
)
|
82 |
y = spectrogram_image_to_audio(spec_image)
|
83 |
+
|
84 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
85 |
audio_path = temp_audio.name
|
86 |
sf.write(audio_path, y, DEFAULT_SAMPLE_RATE)
|
87 |
+
|
88 |
# Create spectrogram from audio
|
89 |
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
90 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
91 |
plt.figure(figsize=(10, 4))
|
92 |
+
librosa.display.specshow(S_dB, sr=DEFAULT_SAMPLE_RATE, x_axis="time", y_axis="mel")
|
93 |
+
plt.axis("off")
|
94 |
plt.tight_layout(pad=0)
|
95 |
+
|
96 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram:
|
97 |
spectrogram_path = temp_spectrogram.name
|
98 |
+
plt.savefig(
|
99 |
+
spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True
|
100 |
+
)
|
101 |
plt.close()
|
102 |
+
|
103 |
+
# Clean up temporary files
|
104 |
+
os.remove(audio_path)
|
105 |
+
os.remove(spectrogram_path)
|
106 |
+
|
107 |
return audio_path, spectrogram_path
|
108 |
|
109 |
+
|
110 |
# Function for displaying the spectrogram of an audio file
|
111 |
def display_audio_spectrogram(audio_path):
|
112 |
y, sr = librosa.load(audio_path, sr=None)
|
|
|
114 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
115 |
|
116 |
plt.figure(figsize=(10, 4))
|
117 |
+
librosa.display.specshow(S_dB, sr=sr, x_axis="time", y_axis="mel")
|
118 |
+
plt.axis("off")
|
119 |
plt.tight_layout(pad=0)
|
120 |
|
121 |
+
buf = BytesIO()
|
122 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, transparent=True)
|
|
|
123 |
plt.close()
|
124 |
+
buf.seek(0)
|
125 |
+
return buf
|
126 |
+
|
127 |
|
128 |
# Converting a downloaded image to an audio spectrogram
|
129 |
def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
130 |
+
image = Image.open(image_path).convert("L")
|
131 |
image = np.array(image)
|
132 |
y = spectrogram_image_to_audio(image, sr)
|
133 |
+
|
134 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
135 |
img2audio_path = temp_audio.name
|
136 |
sf.write(img2audio_path, y, sr)
|
137 |
return img2audio_path
|
138 |
|
139 |
+
|
140 |
# Gradio interface
|
141 |
+
def gradio_interface_fn(
|
142 |
+
text, base_width, height, max_font_size, margin, letter_spacing
|
143 |
+
):
|
144 |
+
audio_path, spectrogram_path = create_audio_with_spectrogram(
|
145 |
+
text, base_width, height, max_font_size, margin, letter_spacing
|
146 |
+
)
|
147 |
return audio_path, spectrogram_path
|
148 |
|
149 |
+
|
150 |
def gradio_image_to_audio_fn(upload_image):
|
|
|
151 |
return image_to_spectrogram_audio(upload_image)
|
152 |
|
153 |
+
|
154 |
def gradio_decode_fn(upload_audio):
|
|
|
155 |
return display_audio_spectrogram(upload_audio)
|
156 |
|
157 |
+
|
158 |
+
with gr.Blocks(
|
159 |
+
title="Audio Steganography",
|
160 |
+
css="footer{display:none !important}",
|
161 |
+
theme=gr.themes.Soft(
|
162 |
+
primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg"
|
163 |
+
),
|
164 |
+
) as txt2spec:
|
165 |
with gr.Tab("Text to Spectrogram"):
|
166 |
with gr.Group():
|
167 |
+
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text", info="Enter the text you want to convert to audio.")
|
168 |
+
with gr.Row(variant="panel"):
|
169 |
base_width = gr.Slider(value=512, label="Image Width", visible=False)
|
170 |
height = gr.Slider(value=256, label="Image Height", visible=False)
|
171 |
+
max_font_size = gr.Slider(
|
172 |
+
minimum=10, maximum=130, step=5, value=80, label="Font size"
|
173 |
+
)
|
174 |
+
margin = gr.Slider(
|
175 |
+
minimum=0, maximum=50, step=1, value=10, label="Indent"
|
176 |
+
)
|
177 |
+
letter_spacing = gr.Slider(
|
178 |
+
minimum=0, maximum=50, step=1, value=5, label="Letter spacing"
|
179 |
+
)
|
180 |
+
generate_button = gr.Button("Generate", variant="primary", size="lg")
|
181 |
+
|
182 |
+
with gr.Column(variant="panel"):
|
183 |
with gr.Group():
|
184 |
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
185 |
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
186 |
|
187 |
+
generate_button.click(
|
188 |
+
gradio_interface_fn,
|
189 |
+
inputs=[text, base_width, height, max_font_size, margin, letter_spacing],
|
190 |
+
outputs=[output_audio, output_spectrogram],
|
191 |
+
)
|
192 |
|
193 |
with gr.Tab("Image to Spectrogram"):
|
194 |
with gr.Group():
|
195 |
with gr.Column():
|
196 |
upload_image = gr.Image(type="filepath", label="Upload image")
|
197 |
+
convert_button = gr.Button(
|
198 |
+
"Convert to audio", variant="primary", size="lg"
|
199 |
+
)
|
200 |
|
201 |
+
with gr.Column(variant="panel"):
|
202 |
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
203 |
|
204 |
+
convert_button.click(
|
205 |
+
gradio_image_to_audio_fn,
|
206 |
+
inputs=[upload_image],
|
207 |
+
outputs=[output_audio_from_image],
|
208 |
+
)
|
209 |
|
210 |
with gr.Tab("Audio Spectrogram"):
|
211 |
with gr.Group():
|
212 |
with gr.Column():
|
213 |
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
|
214 |
+
decode_button = gr.Button(
|
215 |
+
"Show spectrogram", variant="primary", size="lg"
|
216 |
+
)
|
217 |
|
218 |
+
with gr.Column(variant="panel"):
|
219 |
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
220 |
|
221 |
+
decode_button.click(
|
222 |
+
gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image]
|
223 |
+
)
|
224 |
|
225 |
+
txt2spec.launch(share=True)
|