Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
|
3 |
os.system("apt-get install -y fonts-dejavu")
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
import librosa
|
5 |
+
import librosa.display
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
import soundfile as sf
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
import os
|
11 |
+
import cv2
|
12 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
13 |
|
14 |
os.system("apt-get install -y fonts-dejavu")
|
15 |
+
|
16 |
+
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
17 |
+
DEFAULT_SAMPLE_RATE = 22050
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
|
21 |
+
def load_font(font_path, max_font_size):
|
22 |
+
try:
|
23 |
+
return ImageFont.truetype(font_path, max_font_size)
|
24 |
+
except IOError:
|
25 |
+
logging.warning(f"Font not found at {font_path}. Using default font.")
|
26 |
+
return ImageFont.load_default()
|
27 |
+
except Exception as e:
|
28 |
+
logging.error(f"An error occurred while loading the font: {e}")
|
29 |
+
raise
|
30 |
+
|
31 |
+
def create_text_image(text, font, base_width=512, height=256, margin=10, letter_spacing=5):
|
32 |
+
draw = ImageDraw.Draw(Image.new("L", (1, 1)))
|
33 |
+
text_widths = [
|
34 |
+
draw.textbbox((0, 0), char, font=font)[2] - draw.textbbox((0, 0), char, font=font)[0]
|
35 |
+
for char in text
|
36 |
+
]
|
37 |
+
text_width = sum(text_widths) + letter_spacing * (len(text) - 1)
|
38 |
+
text_height = (
|
39 |
+
draw.textbbox((0, 0), text[0], font=font)[3]
|
40 |
+
- draw.textbbox((0, 0), text[0], font=font)[1]
|
41 |
+
)
|
42 |
+
|
43 |
+
width = max(base_width, text_width + margin * 2)
|
44 |
+
height = max(height, text_height + margin * 2)
|
45 |
+
|
46 |
+
image = Image.new("L", (width, height), "black")
|
47 |
+
draw = ImageDraw.Draw(image)
|
48 |
+
|
49 |
+
text_start_x = (width - text_width) // 2
|
50 |
+
text_start_y = (height - text_height) // 2
|
51 |
+
|
52 |
+
current_x = text_start_x
|
53 |
+
for char, char_width in zip(text, text_widths):
|
54 |
+
draw.text((current_x, text_start_y), char, font=font, fill="white")
|
55 |
+
current_x += char_width + letter_spacing
|
56 |
+
|
57 |
+
return np.array(image)
|
58 |
+
|
59 |
+
def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
60 |
+
flipped_image = np.flipud(image)
|
61 |
+
S = flipped_image.astype(np.float32) / 255.0 * 100.0
|
62 |
+
y = librosa.griffinlim(S)
|
63 |
+
return y
|
64 |
+
|
65 |
+
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
|
66 |
+
font = load_font(DEFAULT_FONT_PATH, max_font_size)
|
67 |
+
spec_image = create_text_image(text, font, base_width, height, margin, letter_spacing)
|
68 |
+
y = spectrogram_image_to_audio(spec_image)
|
69 |
+
|
70 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
71 |
+
audio_path = temp_audio.name
|
72 |
+
sf.write(audio_path, y, DEFAULT_SAMPLE_RATE)
|
73 |
+
|
74 |
+
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
75 |
+
S_dB = librosa.power_to_db(S, ref=np.max)
|
76 |
+
plt.figure(figsize=(10, 4))
|
77 |
+
librosa.display.specshow(S_dB, sr=DEFAULT_SAMPLE_RATE, x_axis="time", y_axis="mel")
|
78 |
+
plt.axis("off")
|
79 |
+
plt.tight_layout(pad=0)
|
80 |
+
|
81 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram:
|
82 |
+
spectrogram_path = temp_spectrogram.name
|
83 |
+
plt.savefig(spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True)
|
84 |
+
plt.close()
|
85 |
+
|
86 |
+
return audio_path, spectrogram_path
|
87 |
+
|
88 |
+
def display_audio_spectrogram(audio_path):
|
89 |
+
y, sr = librosa.load(audio_path, sr=None)
|
90 |
+
S = librosa.feature.melspectrogram(y=y, sr=sr)
|
91 |
+
S_dB = librosa.power_to_db(S, ref=np.max)
|
92 |
+
|
93 |
+
plt.figure(figsize=(10, 4))
|
94 |
+
librosa.display.specshow(S_dB, sr=sr, x_axis="time", y_axis="mel")
|
95 |
+
plt.axis("off")
|
96 |
+
plt.tight_layout(pad=0)
|
97 |
+
|
98 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram:
|
99 |
+
spectrogram_path = temp_spectrogram.name
|
100 |
+
plt.savefig(spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True)
|
101 |
+
plt.close()
|
102 |
+
return spectrogram_path
|
103 |
+
|
104 |
+
def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
105 |
+
image = Image.open(image_path).convert("L")
|
106 |
+
image = np.array(image)
|
107 |
+
y = spectrogram_image_to_audio(image, sr)
|
108 |
+
|
109 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
110 |
+
img2audio_path = temp_audio.name
|
111 |
+
sf.write(img2audio_path, y, sr)
|
112 |
+
return img2audio_path
|
113 |
+
|
114 |
+
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
|
115 |
+
audio_path, spectrogram_path = create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
|
116 |
+
return audio_path, spectrogram_path
|
117 |
+
|
118 |
+
def gradio_image_to_audio_fn(upload_image):
|
119 |
+
return image_to_spectrogram_audio(upload_image)
|
120 |
+
|
121 |
+
def gradio_decode_fn(upload_audio):
|
122 |
+
return display_audio_spectrogram(upload_audio)
|
123 |
+
|
124 |
+
def extract_audio(video_path):
|
125 |
+
try:
|
126 |
+
video = VideoFileClip(video_path)
|
127 |
+
if video.audio is None:
|
128 |
+
raise ValueError("No audio found in the video")
|
129 |
+
audio_path = "extracted_audio.wav"
|
130 |
+
video.audio.write_audiofile(audio_path)
|
131 |
+
return audio_path
|
132 |
+
except Exception as e:
|
133 |
+
logging.error(f"Failed to extract audio: {e}")
|
134 |
+
return None
|
135 |
+
|
136 |
+
def extract_frames(video_path):
|
137 |
+
try:
|
138 |
+
video = cv2.VideoCapture(video_path)
|
139 |
+
frames = []
|
140 |
+
success, frame = video.read()
|
141 |
+
while success:
|
142 |
+
frames.append(frame)
|
143 |
+
success, frame = video.read()
|
144 |
+
video.release()
|
145 |
+
return frames
|
146 |
+
except Exception as e:
|
147 |
+
logging.error(f"Failed to extract frames: {e}")
|
148 |
+
return None
|
149 |
+
|
150 |
+
def frame_to_spectrogram(frame, sr=DEFAULT_SAMPLE_RATE):
|
151 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
152 |
+
S = np.flipud(gray_frame.astype(np.float32) / 255.0 * 100.0)
|
153 |
+
y = librosa.griffinlim(S)
|
154 |
+
return y
|
155 |
+
|
156 |
+
def save_audio(y, sr=DEFAULT_SAMPLE_RATE):
|
157 |
+
audio_path = 'output_frame_audio.wav'
|
158 |
+
sf.write(audio_path, y, sr)
|
159 |
+
return audio_path
|
160 |
+
|
161 |
+
def save_spectrogram_image(S, frame_number, temp_dir):
|
162 |
+
plt.figure(figsize=(10, 4))
|
163 |
+
librosa.display.specshow(S)
|
164 |
+
plt.tight_layout()
|
165 |
+
image_path = os.path.join(temp_dir, f'spectrogram_frame_{frame_number}.png')
|
166 |
+
plt.savefig(image_path)
|
167 |
+
plt.close()
|
168 |
+
return image_path
|
169 |
+
|
170 |
+
def process_video_frames(frames, sr=DEFAULT_SAMPLE_RATE, temp_dir=None):
|
171 |
+
processed_frames = []
|
172 |
+
total_frames = len(frames)
|
173 |
+
for i, frame in enumerate(frames):
|
174 |
+
y = frame_to_spectrogram(frame, sr)
|
175 |
+
S = librosa.feature.melspectrogram(y=y, sr=sr)
|
176 |
+
image_path = save_spectrogram_image(S, i, temp_dir)
|
177 |
+
processed_frame = cv2.imread(image_path)
|
178 |
+
processed_frames.append(processed_frame)
|
179 |
+
return processed_frames
|
180 |
+
|
181 |
+
def save_video_from_frames(frames, output_path, fps=30):
|
182 |
+
height, width, layers = frames[0].shape
|
183 |
+
video = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
184 |
+
for frame in frames:
|
185 |
+
video.write(frame)
|
186 |
+
video.release()
|
187 |
+
|
188 |
+
def add_audio_to_video(video_path, audio_path, output_path):
|
189 |
+
try:
|
190 |
+
video = VideoFileClip(video_path)
|
191 |
+
audio = AudioFileClip(audio_path)
|
192 |
+
final_video = video.set_audio(audio)
|
193 |
+
final_video.write_videofile(output_path, codec='libx264', audio_codec='aac')
|
194 |
+
except Exception as e:
|
195 |
+
logging.error(f"Failed to add audio to video: {e}")
|
196 |
+
|
197 |
+
def process_video(video_path):
|
198 |
+
try:
|
199 |
+
video = VideoFileClip(video_path)
|
200 |
+
if video.duration > 10:
|
201 |
+
video = video.subclip(0, 10)
|
202 |
+
temp_trimmed_video_path = "trimmed_video.mp4"
|
203 |
+
video.write_videofile(temp_trimmed_video_path, codec='libx264')
|
204 |
+
video_path = temp_trimmed_video_path
|
205 |
+
except Exception as e:
|
206 |
+
return f"Failed to load video: {e}"
|
207 |
+
|
208 |
+
audio_path = extract_audio(video_path)
|
209 |
+
if audio_path is None:
|
210 |
+
return "Failed to extract audio from video."
|
211 |
+
frames = extract_frames(video_path)
|
212 |
+
if frames is None:
|
213 |
+
return "Failed to extract frames from video."
|
214 |
+
|
215 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
216 |
+
processed_frames = process_video_frames(frames, temp_dir=temp_dir)
|
217 |
+
temp_video_path = os.path.join(temp_dir, 'processed_video.mp4')
|
218 |
+
save_video_from_frames(processed_frames, temp_video_path)
|
219 |
+
output_video_path = 'output_video_with_audio.mp4'
|
220 |
+
add_audio_to_video(temp_video_path, audio_path, output_video_path)
|
221 |
+
return output_video_path
|
222 |
+
|
223 |
+
def create_gradio_interface():
|
224 |
+
with gr.Blocks(title="Audio Steganography", css="footer{display:none !important}", theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as txt2spec:
|
225 |
+
with gr.Tab("Text to Spectrogram"):
|
226 |
+
with gr.Group():
|
227 |
+
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text", info="Enter the text you want to convert to audio.")
|
228 |
+
with gr.Row(variant="panel"):
|
229 |
+
base_width = gr.Slider(value=512, label="Image Width", visible=False)
|
230 |
+
height = gr.Slider(value=256, label="Image Height", visible=False)
|
231 |
+
max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size")
|
232 |
+
margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent")
|
233 |
+
letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing")
|
234 |
+
generate_button = gr.Button("Generate", variant="primary", size="lg")
|
235 |
+
|
236 |
+
with gr.Column(variant="panel"):
|
237 |
+
with gr.Group():
|
238 |
+
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
239 |
+
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
240 |
+
|
241 |
+
generate_button.click(gradio_interface_fn, inputs=[text, base_width, height, max_font_size, margin, letter_spacing], outputs=[output_audio, output_spectrogram])
|
242 |
+
|
243 |
+
with gr.Tab("Image to Spectrogram"):
|
244 |
+
with gr.Group():
|
245 |
+
with gr.Column():
|
246 |
+
upload_image = gr.Image(type="filepath", label="Upload image")
|
247 |
+
convert_button = gr.Button("Convert to audio", variant="primary", size="lg")
|
248 |
+
|
249 |
+
with gr.Column(variant="panel"):
|
250 |
+
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
251 |
+
|
252 |
+
convert_button.click(gradio_image_to_audio_fn, inputs=[upload_image], outputs=[output_audio_from_image])
|
253 |
+
|
254 |
+
with gr.Tab("Audio to Spectrogram"):
|
255 |
+
with gr.Group():
|
256 |
+
with gr.Column():
|
257 |
+
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
|
258 |
+
decode_button = gr.Button("Show spectrogram", variant="primary", size="lg")
|
259 |
+
|
260 |
+
with gr.Column(variant="panel"):
|
261 |
+
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
262 |
+
|
263 |
+
decode_button.click(gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image])
|
264 |
+
|
265 |
+
with gr.Tab("Video to Spectrogram"):
|
266 |
+
with gr.Group():
|
267 |
+
video_input = gr.Video(label="Upload video")
|
268 |
+
generate_button = gr.Button("Generate", variant="primary", size="lg")
|
269 |
+
|
270 |
+
with gr.Column(variant="panel"):
|
271 |
+
video_output = gr.Video(label="Video Spectrogram")
|
272 |
+
|
273 |
+
generate_button.click(process_video, inputs=[video_input], outputs=[video_output])
|
274 |
+
|
275 |
+
return txt2spec
|
276 |
+
|
277 |
+
if __name__ == "__main__":
|
278 |
+
txt2spec = create_gradio_interface()
|
279 |
+
txt2spec.launch(share=True)
|