Spaces:
Running
Running
Update steganography.py
Browse files- steganography.py +17 -76
steganography.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
import logging
|
2 |
import tempfile
|
3 |
-
import os
|
4 |
-
from io import BytesIO
|
5 |
-
|
6 |
import gradio as gr
|
7 |
import librosa
|
8 |
import librosa.display
|
@@ -11,18 +8,12 @@ import numpy as np
|
|
11 |
import soundfile as sf
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
|
14 |
-
# Constants
|
15 |
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
16 |
DEFAULT_SAMPLE_RATE = 22050
|
17 |
|
18 |
-
# Setup logging
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
|
21 |
-
|
22 |
-
# Function for creating a spectrogram image with text
|
23 |
-
def text_to_spectrogram_image(
|
24 |
-
text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5
|
25 |
-
):
|
26 |
try:
|
27 |
font = ImageFont.truetype(DEFAULT_FONT_PATH, max_font_size)
|
28 |
except IOError:
|
@@ -44,7 +35,6 @@ def text_to_spectrogram_image(
|
|
44 |
- draw.textbbox((0, 0), text[0], font=font)[1]
|
45 |
)
|
46 |
|
47 |
-
# Adjust width and height based on text size
|
48 |
width = max(base_width, text_width + margin * 2)
|
49 |
height = max(height, text_height + margin * 2)
|
50 |
|
@@ -63,29 +53,20 @@ def text_to_spectrogram_image(
|
|
63 |
image = np.where(image > 0, 255, image)
|
64 |
return image
|
65 |
|
66 |
-
|
67 |
-
# Converting an image to audio
|
68 |
def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
69 |
flipped_image = np.flipud(image)
|
70 |
S = flipped_image.astype(np.float32) / 255.0 * 100.0
|
71 |
y = librosa.griffinlim(S)
|
72 |
return y
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
def create_audio_with_spectrogram(
|
77 |
-
text, base_width, height, max_font_size, margin, letter_spacing
|
78 |
-
):
|
79 |
-
spec_image = text_to_spectrogram_image(
|
80 |
-
text, base_width, height, max_font_size, margin, letter_spacing
|
81 |
-
)
|
82 |
y = spectrogram_image_to_audio(spec_image)
|
83 |
|
84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
85 |
audio_path = temp_audio.name
|
86 |
sf.write(audio_path, y, DEFAULT_SAMPLE_RATE)
|
87 |
|
88 |
-
# Create spectrogram from audio
|
89 |
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
90 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
91 |
plt.figure(figsize=(10, 4))
|
@@ -95,15 +76,11 @@ def create_audio_with_spectrogram(
|
|
95 |
|
96 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram:
|
97 |
spectrogram_path = temp_spectrogram.name
|
98 |
-
plt.savefig(
|
99 |
-
spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True
|
100 |
-
)
|
101 |
plt.close()
|
102 |
|
103 |
return audio_path, spectrogram_path
|
104 |
|
105 |
-
|
106 |
-
# Function for displaying the spectrogram of an audio file
|
107 |
def display_audio_spectrogram(audio_path):
|
108 |
y, sr = librosa.load(audio_path, sr=None)
|
109 |
S = librosa.feature.melspectrogram(y=y, sr=sr)
|
@@ -114,14 +91,12 @@ def display_audio_spectrogram(audio_path):
|
|
114 |
plt.axis("off")
|
115 |
plt.tight_layout(pad=0)
|
116 |
|
117 |
-
|
118 |
-
|
|
|
119 |
plt.close()
|
120 |
-
|
121 |
-
return buf
|
122 |
-
|
123 |
|
124 |
-
# Converting a downloaded image to an audio spectrogram
|
125 |
def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
126 |
image = Image.open(image_path).convert("L")
|
127 |
image = np.array(image)
|
@@ -132,46 +107,26 @@ def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
|
132 |
sf.write(img2audio_path, y, sr)
|
133 |
return img2audio_path
|
134 |
|
135 |
-
|
136 |
-
# Gradio interface
|
137 |
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
|
138 |
-
logging.info(f"Generating audio and spectrogram for text:\n{text}\n")
|
139 |
audio_path, spectrogram_path = create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
|
140 |
return audio_path, spectrogram_path
|
141 |
|
142 |
-
|
143 |
def gradio_image_to_audio_fn(upload_image):
|
144 |
-
logging.info(f"Converting image to audio:\n{upload_image}\n")
|
145 |
return image_to_spectrogram_audio(upload_image)
|
146 |
|
147 |
-
|
148 |
def gradio_decode_fn(upload_audio):
|
149 |
-
logging.info(f"Generating spectrogram for audio:\n{upload_audio}\n")
|
150 |
return display_audio_spectrogram(upload_audio)
|
151 |
|
152 |
-
|
153 |
-
with gr.Blocks(
|
154 |
-
title="Audio Steganography",
|
155 |
-
css="footer{display:none !important}",
|
156 |
-
theme=gr.themes.Soft(
|
157 |
-
primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg"
|
158 |
-
),
|
159 |
-
) as txt2spec:
|
160 |
with gr.Tab("Text to Spectrogram"):
|
161 |
with gr.Group():
|
162 |
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text", info="Enter the text you want to convert to audio.")
|
163 |
with gr.Row(variant="panel"):
|
164 |
base_width = gr.Slider(value=512, label="Image Width", visible=False)
|
165 |
height = gr.Slider(value=256, label="Image Height", visible=False)
|
166 |
-
max_font_size = gr.Slider(
|
167 |
-
|
168 |
-
)
|
169 |
-
margin = gr.Slider(
|
170 |
-
minimum=0, maximum=50, step=1, value=10, label="Indent"
|
171 |
-
)
|
172 |
-
letter_spacing = gr.Slider(
|
173 |
-
minimum=0, maximum=50, step=1, value=5, label="Letter spacing"
|
174 |
-
)
|
175 |
generate_button = gr.Button("Generate", variant="primary", size="lg")
|
176 |
|
177 |
with gr.Column(variant="panel"):
|
@@ -179,42 +134,28 @@ with gr.Blocks(
|
|
179 |
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
180 |
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
181 |
|
182 |
-
generate_button.click(
|
183 |
-
gradio_interface_fn,
|
184 |
-
inputs=[text, base_width, height, max_font_size, margin, letter_spacing],
|
185 |
-
outputs=[output_audio, output_spectrogram],
|
186 |
-
)
|
187 |
|
188 |
with gr.Tab("Image to Spectrogram"):
|
189 |
with gr.Group():
|
190 |
with gr.Column():
|
191 |
upload_image = gr.Image(type="filepath", label="Upload image")
|
192 |
-
convert_button = gr.Button(
|
193 |
-
"Convert to audio", variant="primary", size="lg"
|
194 |
-
)
|
195 |
|
196 |
with gr.Column(variant="panel"):
|
197 |
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
198 |
|
199 |
-
convert_button.click(
|
200 |
-
gradio_image_to_audio_fn,
|
201 |
-
inputs=[upload_image],
|
202 |
-
outputs=[output_audio_from_image],
|
203 |
-
)
|
204 |
|
205 |
with gr.Tab("Audio Spectrogram"):
|
206 |
with gr.Group():
|
207 |
with gr.Column():
|
208 |
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
|
209 |
-
decode_button = gr.Button(
|
210 |
-
"Show spectrogram", variant="primary", size="lg"
|
211 |
-
)
|
212 |
|
213 |
with gr.Column(variant="panel"):
|
214 |
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
215 |
|
216 |
-
decode_button.click(
|
217 |
-
gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image]
|
218 |
-
)
|
219 |
|
220 |
txt2spec.launch(share=True)
|
|
|
1 |
import logging
|
2 |
import tempfile
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import librosa
|
5 |
import librosa.display
|
|
|
8 |
import soundfile as sf
|
9 |
from PIL import Image, ImageDraw, ImageFont
|
10 |
|
|
|
11 |
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
12 |
DEFAULT_SAMPLE_RATE = 22050
|
13 |
|
|
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
+
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
font = ImageFont.truetype(DEFAULT_FONT_PATH, max_font_size)
|
19 |
except IOError:
|
|
|
35 |
- draw.textbbox((0, 0), text[0], font=font)[1]
|
36 |
)
|
37 |
|
|
|
38 |
width = max(base_width, text_width + margin * 2)
|
39 |
height = max(height, text_height + margin * 2)
|
40 |
|
|
|
53 |
image = np.where(image > 0, 255, image)
|
54 |
return image
|
55 |
|
|
|
|
|
56 |
def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
57 |
flipped_image = np.flipud(image)
|
58 |
S = flipped_image.astype(np.float32) / 255.0 * 100.0
|
59 |
y = librosa.griffinlim(S)
|
60 |
return y
|
61 |
|
62 |
+
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
|
63 |
+
spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
y = spectrogram_image_to_audio(spec_image)
|
65 |
|
66 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
67 |
audio_path = temp_audio.name
|
68 |
sf.write(audio_path, y, DEFAULT_SAMPLE_RATE)
|
69 |
|
|
|
70 |
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
71 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
72 |
plt.figure(figsize=(10, 4))
|
|
|
76 |
|
77 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram:
|
78 |
spectrogram_path = temp_spectrogram.name
|
79 |
+
plt.savefig(spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True)
|
|
|
|
|
80 |
plt.close()
|
81 |
|
82 |
return audio_path, spectrogram_path
|
83 |
|
|
|
|
|
84 |
def display_audio_spectrogram(audio_path):
|
85 |
y, sr = librosa.load(audio_path, sr=None)
|
86 |
S = librosa.feature.melspectrogram(y=y, sr=sr)
|
|
|
91 |
plt.axis("off")
|
92 |
plt.tight_layout(pad=0)
|
93 |
|
94 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_spectrogram:
|
95 |
+
spectrogram_path = temp_spectrogram.name
|
96 |
+
plt.savefig(spectrogram_path, bbox_inches="tight", pad_inches=0, transparent=True)
|
97 |
plt.close()
|
98 |
+
return spectrogram_path
|
|
|
|
|
99 |
|
|
|
100 |
def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
101 |
image = Image.open(image_path).convert("L")
|
102 |
image = np.array(image)
|
|
|
107 |
sf.write(img2audio_path, y, sr)
|
108 |
return img2audio_path
|
109 |
|
|
|
|
|
110 |
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
|
|
|
111 |
audio_path, spectrogram_path = create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
|
112 |
return audio_path, spectrogram_path
|
113 |
|
|
|
114 |
def gradio_image_to_audio_fn(upload_image):
|
|
|
115 |
return image_to_spectrogram_audio(upload_image)
|
116 |
|
|
|
117 |
def gradio_decode_fn(upload_audio):
|
|
|
118 |
return display_audio_spectrogram(upload_audio)
|
119 |
|
120 |
+
with gr.Blocks(title="Audio Steganography", css="footer{display:none !important}", theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as txt2spec:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
with gr.Tab("Text to Spectrogram"):
|
122 |
with gr.Group():
|
123 |
text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text", info="Enter the text you want to convert to audio.")
|
124 |
with gr.Row(variant="panel"):
|
125 |
base_width = gr.Slider(value=512, label="Image Width", visible=False)
|
126 |
height = gr.Slider(value=256, label="Image Height", visible=False)
|
127 |
+
max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size")
|
128 |
+
margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent")
|
129 |
+
letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing")
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
generate_button = gr.Button("Generate", variant="primary", size="lg")
|
131 |
|
132 |
with gr.Column(variant="panel"):
|
|
|
134 |
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
135 |
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
136 |
|
137 |
+
generate_button.click(gradio_interface_fn, inputs=[text, base_width, height, max_font_size, margin, letter_spacing], outputs=[output_audio, output_spectrogram])
|
|
|
|
|
|
|
|
|
138 |
|
139 |
with gr.Tab("Image to Spectrogram"):
|
140 |
with gr.Group():
|
141 |
with gr.Column():
|
142 |
upload_image = gr.Image(type="filepath", label="Upload image")
|
143 |
+
convert_button = gr.Button("Convert to audio", variant="primary", size="lg")
|
|
|
|
|
144 |
|
145 |
with gr.Column(variant="panel"):
|
146 |
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
147 |
|
148 |
+
convert_button.click(gradio_image_to_audio_fn, inputs=[upload_image], outputs=[output_audio_from_image])
|
|
|
|
|
|
|
|
|
149 |
|
150 |
with gr.Tab("Audio Spectrogram"):
|
151 |
with gr.Group():
|
152 |
with gr.Column():
|
153 |
upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3)
|
154 |
+
decode_button = gr.Button("Show spectrogram", variant="primary", size="lg")
|
|
|
|
|
155 |
|
156 |
with gr.Column(variant="panel"):
|
157 |
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
158 |
|
159 |
+
decode_button.click(gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image])
|
|
|
|
|
160 |
|
161 |
txt2spec.launch(share=True)
|