Spaces:
Running
Running
Update steganography.py
Browse files- steganography.py +35 -20
steganography.py
CHANGED
@@ -5,17 +5,23 @@ import librosa
|
|
5 |
import librosa.display
|
6 |
import gradio as gr
|
7 |
import soundfile as sf
|
|
|
|
|
|
|
8 |
|
9 |
# Constants
|
10 |
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
11 |
DEFAULT_SAMPLE_RATE = 22050
|
12 |
|
|
|
|
|
|
|
13 |
# Function for creating a spectrogram image with text
|
14 |
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
|
15 |
try:
|
16 |
font = ImageFont.truetype(DEFAULT_FONT_PATH, max_font_size)
|
17 |
except IOError:
|
18 |
-
|
19 |
font = ImageFont.load_default()
|
20 |
|
21 |
image = Image.new('L', (base_width, height), 'black')
|
@@ -55,8 +61,10 @@ def spectrogram_image_to_audio(image, sr=DEFAULT_SAMPLE_RATE):
|
|
55 |
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
|
56 |
spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
|
57 |
y = spectrogram_image_to_audio(spec_image)
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
# Create spectrogram from audio
|
62 |
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
@@ -65,8 +73,10 @@ def create_audio_with_spectrogram(text, base_width, height, max_font_size, margi
|
|
65 |
librosa.display.specshow(S_dB, sr=DEFAULT_SAMPLE_RATE, x_axis='time', y_axis='mel')
|
66 |
plt.axis('off')
|
67 |
plt.tight_layout(pad=0)
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
plt.close()
|
71 |
|
72 |
return audio_path, spectrogram_path
|
@@ -82,8 +92,9 @@ def display_audio_spectrogram(audio_path):
|
|
82 |
plt.axis('off')
|
83 |
plt.tight_layout(pad=0)
|
84 |
|
85 |
-
|
86 |
-
|
|
|
87 |
plt.close()
|
88 |
return spectrogram_path
|
89 |
|
@@ -92,11 +103,26 @@ def image_to_spectrogram_audio(image_path, sr=DEFAULT_SAMPLE_RATE):
|
|
92 |
image = Image.open(image_path).convert('L')
|
93 |
image = np.array(image)
|
94 |
y = spectrogram_image_to_audio(image, sr)
|
95 |
-
|
96 |
-
|
|
|
|
|
97 |
return img2audio_path
|
98 |
|
99 |
# Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as txt2spec:
|
101 |
with gr.Tab("Text to Spectrogram"):
|
102 |
with gr.Group():
|
@@ -114,11 +140,6 @@ with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="gr
|
|
114 |
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
115 |
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
116 |
|
117 |
-
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
|
118 |
-
print("\n", text)
|
119 |
-
audio_path, spectrogram_path = create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
|
120 |
-
return audio_path, spectrogram_path
|
121 |
-
|
122 |
generate_button.click(gradio_interface_fn, inputs=[text, base_width, height, max_font_size, margin, letter_spacing], outputs=[output_audio, output_spectrogram])
|
123 |
|
124 |
with gr.Tab("Image to Spectrogram"):
|
@@ -130,9 +151,6 @@ with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="gr
|
|
130 |
with gr.Column(variant='panel'):
|
131 |
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
132 |
|
133 |
-
def gradio_image_to_audio_fn(upload_image):
|
134 |
-
return image_to_spectrogram_audio(upload_image)
|
135 |
-
|
136 |
convert_button.click(gradio_image_to_audio_fn, inputs=[upload_image], outputs=[output_audio_from_image])
|
137 |
|
138 |
with gr.Tab("Audio Spectrogram"):
|
@@ -144,9 +162,6 @@ with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="gr
|
|
144 |
with gr.Column(variant='panel'):
|
145 |
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
146 |
|
147 |
-
def gradio_decode_fn(upload_audio):
|
148 |
-
return display_audio_spectrogram(upload_audio)
|
149 |
-
|
150 |
decode_button.click(gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image])
|
151 |
|
152 |
txt2spec.launch(share=True)
|
|
|
5 |
import librosa.display
|
6 |
import gradio as gr
|
7 |
import soundfile as sf
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
import tempfile
|
11 |
|
12 |
# Constants
|
13 |
DEFAULT_FONT_PATH = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
|
14 |
DEFAULT_SAMPLE_RATE = 22050
|
15 |
|
16 |
+
# Setup logging
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
|
19 |
# Function for creating a spectrogram image with text
|
20 |
def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5):
|
21 |
try:
|
22 |
font = ImageFont.truetype(DEFAULT_FONT_PATH, max_font_size)
|
23 |
except IOError:
|
24 |
+
logging.warning(f"Font not found at {DEFAULT_FONT_PATH}. Using default font.")
|
25 |
font = ImageFont.load_default()
|
26 |
|
27 |
image = Image.new('L', (base_width, height), 'black')
|
|
|
61 |
def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing):
|
62 |
spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing)
|
63 |
y = spectrogram_image_to_audio(spec_image)
|
64 |
+
|
65 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
|
66 |
+
audio_path = temp_audio.name
|
67 |
+
sf.write(audio_path, y, DEFAULT_SAMPLE_RATE)
|
68 |
|
69 |
# Create spectrogram from audio
|
70 |
S = librosa.feature.melspectrogram(y=y, sr=DEFAULT_SAMPLE_RATE)
|
|
|
73 |
librosa.display.specshow(S_dB, sr=DEFAULT_SAMPLE_RATE, x_axis='time', y_axis='mel')
|
74 |
plt.axis('off')
|
75 |
plt.tight_layout(pad=0)
|
76 |
+
|
77 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_spectrogram:
|
78 |
+
spectrogram_path = temp_spectrogram.name
|
79 |
+
plt.savefig(spectrogram_path, bbox_inches='tight', pad_inches=0, transparent=True)
|
80 |
plt.close()
|
81 |
|
82 |
return audio_path, spectrogram_path
|
|
|
92 |
plt.axis('off')
|
93 |
plt.tight_layout(pad=0)
|
94 |
|
95 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_spectrogram:
|
96 |
+
spectrogram_path = temp_spectrogram.name
|
97 |
+
plt.savefig(spectrogram_path, bbox_inches='tight', pad_inches=0, transparent=True)
|
98 |
plt.close()
|
99 |
return spectrogram_path
|
100 |
|
|
|
103 |
image = Image.open(image_path).convert('L')
|
104 |
image = np.array(image)
|
105 |
y = spectrogram_image_to_audio(image, sr)
|
106 |
+
|
107 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
|
108 |
+
img2audio_path = temp_audio.name
|
109 |
+
sf.write(img2audio_path, y, sr)
|
110 |
return img2audio_path
|
111 |
|
112 |
# Gradio interface
|
113 |
+
def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing):
|
114 |
+
logging.info(f"Generating audio and spectrogram for text: {text}")
|
115 |
+
audio_path, spectrogram_path = create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing)
|
116 |
+
return audio_path, spectrogram_path
|
117 |
+
|
118 |
+
def gradio_image_to_audio_fn(upload_image):
|
119 |
+
logging.info(f"Converting image to audio: {upload_image}")
|
120 |
+
return image_to_spectrogram_audio(upload_image)
|
121 |
+
|
122 |
+
def gradio_decode_fn(upload_audio):
|
123 |
+
logging.info(f"Generating spectrogram for audio: {upload_audio}")
|
124 |
+
return display_audio_spectrogram(upload_audio)
|
125 |
+
|
126 |
with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as txt2spec:
|
127 |
with gr.Tab("Text to Spectrogram"):
|
128 |
with gr.Group():
|
|
|
140 |
output_audio = gr.Audio(type="filepath", label="Generated audio")
|
141 |
output_spectrogram = gr.Image(type="filepath", label="Spectrogram")
|
142 |
|
|
|
|
|
|
|
|
|
|
|
143 |
generate_button.click(gradio_interface_fn, inputs=[text, base_width, height, max_font_size, margin, letter_spacing], outputs=[output_audio, output_spectrogram])
|
144 |
|
145 |
with gr.Tab("Image to Spectrogram"):
|
|
|
151 |
with gr.Column(variant='panel'):
|
152 |
output_audio_from_image = gr.Audio(type="filepath", label="Generated audio")
|
153 |
|
|
|
|
|
|
|
154 |
convert_button.click(gradio_image_to_audio_fn, inputs=[upload_image], outputs=[output_audio_from_image])
|
155 |
|
156 |
with gr.Tab("Audio Spectrogram"):
|
|
|
162 |
with gr.Column(variant='panel'):
|
163 |
decoded_image = gr.Image(type="filepath", label="Audio Spectrogram")
|
164 |
|
|
|
|
|
|
|
165 |
decode_button.click(gradio_decode_fn, inputs=[upload_audio], outputs=[decoded_image])
|
166 |
|
167 |
txt2spec.launch(share=True)
|