File size: 17,628 Bytes
97de7f8 0c181d0 97de7f8 64e5385 6e56fb5 64e5385 d0c5644 c3a89b9 97de7f8 c3a89b9 97de7f8 82265a5 97de7f8 016e1b9 0c181d0 97de7f8 64e5385 d6b0a19 97de7f8 64e5385 d6a50a5 64e5385 7326b46 36f10dd 7326b46 64e5385 7326b46 64e5385 8e127f5 36f10dd 8e127f5 64e5385 d0c5644 559c38e d0c5644 97de7f8 d0c5644 5a143b3 d0c5644 97de7f8 d0c5644 4ee9a82 c3a89b9 4ee9a82 27e3545 4ee9a82 c3a89b9 97de7f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import pandas as pd
from arango import ArangoClient
from tqdm import tqdm
import numpy as np
import itertools
import requests
import sys
import oasis
from arango import ArangoClient
import torch
import torch.nn.functional as F
from torch.nn import Linear
from arango import ArangoClient
import torch_geometric.transforms as T
from torch_geometric.nn import SAGEConv, to_hetero
from torch_geometric.transforms import RandomLinkSplit, ToUndirected
from sentence_transformers import SentenceTransformer
from torch_geometric.data import HeteroData
import yaml
#-------------------------------------------------------------------------------------------
# Functions
# performs user and movie mappings
def node_mappings(path, index_col):
df = pd.read_csv(path, index_col=index_col)
mapping = {index: i for i, index in enumerate(df.index.unique())}
return mapping
def convert_int(x):
try:
return int(x)
except:
return np.nan
def remove_movies():
'''
# Remove ids which dont have meta data information
'''
no_metadata = []
for idx in range(len(m_id)):
tmdb_id = id_map.loc[id_map['movieId'] == m_id[idx]]
if tmdb_id.size == 0:
no_metadata.append(m_id[idx])
#print('No Meta data information at:', m_id[idx])
return no_metadata
def populate_user_collection(total_users):
batch = []
BATCH_SIZE = 50
batch_idx = 1
index = 0
user_ids = list(user_mapping.keys())
user_collection = movie_rec_db["Users"]
for idx in tqdm(range(total_users)):
insert_doc = {}
insert_doc["_id"] = "Users/" + str(user_mapping[user_ids[idx]])
insert_doc["original_id"] = str(user_ids[idx])
batch.append(insert_doc)
index +=1
last_record = (idx == (total_users - 1))
if index % BATCH_SIZE == 0:
#print("Inserting batch %d" % (batch_idx))
batch_idx += 1
user_collection.import_bulk(batch)
batch = []
if last_record and len(batch) > 0:
print("Inserting batch the last batch!")
user_collection.import_bulk(batch)
def create_ratings_graph(user_id, movie_id, ratings):
batch = []
BATCH_SIZE = 100
batch_idx = 1
index = 0
edge_collection = movie_rec_db["Ratings"]
for idx in tqdm(range(ratings.shape[0])):
# removing edges (movies) with no metatdata
if movie_id[idx] in no_metadata:
print('Removing edges with no metadata', movie_id[idx])
else:
insert_doc = {}
insert_doc = {"_from": ("Users" + "/" + str(user_mapping[user_id[idx]])),
"_to": ("Movie" + "/" + str(movie_mappings[movie_id[idx]])),
"_rating": float(ratings[idx])}
batch.append(insert_doc)
index += 1
last_record = (idx == (ratings.shape[0] - 1))
if index % BATCH_SIZE == 0:
#print("Inserting batch %d" % (batch_idx))
batch_idx += 1
edge_collection.import_bulk(batch)
batch = []
if last_record and len(batch) > 0:
print("Inserting batch the last batch!")
edge_collection.import_bulk(batch)
def create_pyg_edges(rating_docs):
src = []
dst = []
ratings = []
for doc in rating_docs:
_from = int(doc['_from'].split('/')[1])
_to = int(doc['_to'].split('/')[1])
src.append(_from)
dst.append(_to)
ratings.append(int(doc['_rating']))
edge_index = torch.tensor([src, dst])
edge_attr = torch.tensor(ratings)
return edge_index, edge_attr
def SequenceEncoder(movie_docs , model_name=None):
movie_titles = [doc['movie_title'] for doc in movie_docs]
model = SentenceTransformer(model_name, device=device)
title_embeddings = model.encode(movie_titles, show_progress_bar=True,
convert_to_tensor=True, device=device)
return title_embeddings
def GenresEncoder(movie_docs):
gen = []
#sep = '|'
for doc in movie_docs:
gen.append(doc['genres'])
#genre = doc['movie_genres']
#gen.append(genre.split(sep))
# getting unique genres
unique_gen = set(list(itertools.chain(*gen)))
print("Number of unqiue genres we have:", unique_gen)
mapping = {g: i for i, g in enumerate(unique_gen)}
x = torch.zeros(len(gen), len(mapping))
for i, m_gen in enumerate(gen):
for genre in m_gen:
x[i, mapping[genre]] = 1
return x.to(device)
def weighted_mse_loss(pred, target, weight=None):
weight = 1. if weight is None else weight[target].to(pred.dtype)
return (weight * (pred - target.to(pred.dtype)).pow(2)).mean()
@torch.no_grad()
def test(data):
model.eval()
pred = model(data.x_dict, data.edge_index_dict,
data['user', 'movie'].edge_label_index)
pred = pred.clamp(min=0, max=5)
target = data['user', 'movie'].edge_label.float()
rmse = F.mse_loss(pred, target).sqrt()
return float(rmse)
def train():
model.train()
optimizer.zero_grad()
pred = model(train_data.x_dict, train_data.edge_index_dict,
train_data['user', 'movie'].edge_label_index)
target = train_data['user', 'movie'].edge_label
loss = weighted_mse_loss(pred, target, weight)
loss.backward()
optimizer.step()
return float(loss)
#-------------------------------------------------------------------------------------------
# SAGE model
class GNNEncoder(torch.nn.Module):
def __init__(self, hidden_channels, out_channels):
super().__init__()
# these convolutions have been replicated to match the number of edge types
self.conv1 = SAGEConv((-1, -1), hidden_channels)
self.conv2 = SAGEConv((-1, -1), out_channels)
def forward(self, x, edge_index):
x = self.conv1(x, edge_index).relu()
x = self.conv2(x, edge_index)
return x
class EdgeDecoder(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.lin1 = Linear(2 * hidden_channels, hidden_channels)
self.lin2 = Linear(hidden_channels, 1)
def forward(self, z_dict, edge_label_index):
row, col = edge_label_index
# concat user and movie embeddings
z = torch.cat([z_dict['user'][row], z_dict['movie'][col]], dim=-1)
# concatenated embeddings passed to linear layer
z = self.lin1(z).relu()
z = self.lin2(z)
return z.view(-1)
class Model(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
self.encoder = GNNEncoder(hidden_channels, hidden_channels)
self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum')
self.decoder = EdgeDecoder(hidden_channels)
def forward(self, x_dict, edge_index_dict, edge_label_index):
# z_dict contains dictionary of movie and user embeddings returned from GraphSage
z_dict = self.encoder(x_dict, edge_index_dict)
return self.decoder(z_dict, edge_label_index)
#-------------------------------------------------------------------------------------------
def make_graph():
global movie_mappings, user_mapping, ratings_df, m_id, id_map, sampled_md
metadata_path = './sampled_movie_dataset/movies_metadata.csv'
df = pd.read_csv(metadata_path)
df = df.drop([19730, 29503, 35587])
df['id'] = df['id'].astype('int')
links_small = pd.read_csv('./sampled_movie_dataset/links_small.csv')
links_small = links_small[links_small['tmdbId'].notnull()]['tmdbId'].astype('int') # selecting tmdbId coloumn from links_small file
sampled_md = df[df['id'].isin(links_small)]
sampled_md['tagline'] = sampled_md['tagline'].fillna('')
sampled_md['description'] = sampled_md['overview'] + sampled_md['tagline']
sampled_md['description'] = sampled_md['description'].fillna('')
sampled_md = sampled_md.reset_index()
indices = pd.Series(sampled_md.index, index=sampled_md['title'])
ind_gen = pd.Series(sampled_md.index, index=sampled_md['genres'])
ratings_path = './sampled_movie_dataset/ratings_small.csv'
ratings_df = pd.read_csv(ratings_path)
m_id = ratings_df['movieId'].tolist()
m_id = list(dict.fromkeys(m_id))
user_mapping = node_mappings(ratings_path, index_col='userId')
movie_mapping = node_mappings(ratings_path, index_col='movieId')
id_map = pd.read_csv('./sampled_movie_dataset/links_small.csv')[['movieId', 'tmdbId']]
id_map['tmdbId'] = id_map['tmdbId'].apply(convert_int)
id_map.columns = ['movieId', 'id']
id_map = id_map.merge(sampled_md[['title', 'id']], on='id').set_index('title') # tmbdid is same (of links_small) as of id in sampled_md
indices_map = id_map.set_index('id')
global no_metadata
no_metadata = remove_movies()
## remove ids which dont have meta data information
for element in no_metadata:
if element in m_id:
print("ids with no metadata information:",element)
m_id.remove(element)
# create new movie_mapping dict with only m_ids having metadata information
movie_mappings = {}
for idx, m in enumerate(m_id):
movie_mappings[m] = idx
return movie_mappings, user_mapping, ratings_df, m_id, id_map, sampled_md
def login_ArangoDB():
# get temporary credentials for ArangoDB on cloud
login = oasis.getTempCredentials(tutorialName="MovieRecommendations", credentialProvider="https://tutorials.arangodb.cloud:8529/_db/_system/tutorialDB/tutorialDB")
# url to access the ArangoDB Web UI
url = "https://"+login["hostname"]+":"+str(login["port"])
username = "Username: " + login["username"]
password = "Password: " + login["password"]
dbname = "Database: " + login["dbName"]
return login,url,username,password,dbname
def create_smart_graph():
# defining graph schema
# create a new graph called movie_rating_graph in the temp database if it does not already exist.
if not movie_rec_db.has_graph("movie_rating_graph"):
movie_rec_db.create_graph('movie_rating_graph', smart=True)
# This returns and API wrapper for the above created graphs
movie_rating_graph = movie_rec_db.graph("movie_rating_graph")
# Create a new vertex collection named "Users" if it does not exist.
if not movie_rating_graph.has_vertex_collection("Users"):
movie_rating_graph.vertex_collection("Users")
# Create a new vertex collection named "Movie" if it does not exist.
if not movie_rating_graph.has_vertex_collection("Movie"):
movie_rating_graph.vertex_collection("Movie")
# creating edge definitions named "Ratings. This creates any missing
# collections and returns an API wrapper for "Ratings" edge collection.
if not movie_rating_graph.has_edge_definition("Ratings"):
Ratings = movie_rating_graph.create_edge_definition(
edge_collection='Ratings',
from_vertex_collections=['Users'],
to_vertex_collections=['Movie']
)
return movie_rating_graph
def load_data_to_ArangoDB(login):
global movie_rec_db
movie_rec_db = oasis.connect_python_arango(login)
movie_rating_graph = create_smart_graph()
if not movie_rec_db.has_collection("Movie"):
movie_rec_db.create_collection("Movie", replication_factor=3)
batch = []
BATCH_SIZE = 128
batch_idx = 1
index = 0
movie_collection = movie_rec_db["Movie"]
# loading movies metadata information into ArangoDB's Movie collection
for idx in tqdm(range(len(m_id))):
insert_doc = {}
tmdb_id = id_map.loc[id_map['movieId'] == m_id[idx]]
if tmdb_id.size == 0:
print('No Meta data information at:', m_id[idx])
else:
tmdb_id = int(tmdb_id.iloc[:,1][0])
emb_id = "Movie/" + str(movie_mappings[m_id[idx]])
insert_doc["_id"] = emb_id
m_meta = sampled_md.loc[sampled_md['id'] == tmdb_id]
# adding movie metadata information
m_title = m_meta.iloc[0]['title']
m_poster = m_meta.iloc[0]['poster_path']
m_description = m_meta.iloc[0]['description']
m_language = m_meta.iloc[0]['original_language']
m_genre = m_meta.iloc[0]['genres']
m_genre = yaml.load(m_genre, Loader=yaml.BaseLoader)
genres = [g['name'] for g in m_genre]
insert_doc["movieId"] = m_id[idx]
insert_doc["mapped_movieId"] = movie_mappings[m_id[idx]]
insert_doc["tmdbId"] = tmdb_id
insert_doc['movie_title'] = m_title
insert_doc['description'] = m_description
insert_doc['genres'] = genres
insert_doc['language'] = m_language
if str(m_poster) == "nan":
insert_doc['poster_path'] = "No poster path available"
else:
insert_doc['poster_path'] = m_poster
batch.append(insert_doc)
index +=1
last_record = (idx == (len(m_id) - 1))
if index % BATCH_SIZE == 0:
#print("Inserting batch %d" % (batch_idx))
batch_idx += 1
movie_collection.import_bulk(batch)
batch = []
if last_record and len(batch) > 0:
print("Inserting batch the last batch!")
movie_collection.import_bulk(batch)
if not movie_rec_db.has_collection("Users"):
movie_rec_db.create_collection("Users", replication_factor=3)
total_users = np.unique(ratings_df[['userId']].values.flatten()).shape[0]
print("Total number of Users:", total_users)
populate_user_collection(total_users)
# This returns an API wrapper for "Ratings" collection.
if not movie_rec_db.has_collection("Ratings"):
movie_rec_db.create_collection("Ratings", edge=True, replication_factor=3)
user_id, movie_id, ratings = ratings_df[['userId']].values.flatten(), ratings_df[['movieId']].values.flatten() , ratings_df[['rating']].values.flatten()
create_ratings_graph(user_id, movie_id, ratings)
return movie_rec_db
def make_pyg_graph(movie_rec_db):
global device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
users = movie_rec_db.collection('Users')
movies = movie_rec_db.collection('Movie')
ratings_graph = movie_rec_db.collection('Ratings')
edge_index, edge_label = create_pyg_edges(movie_rec_db.aql.execute('FOR doc IN Ratings RETURN doc'))
title_emb = SequenceEncoder(movie_rec_db.aql.execute('FOR doc IN Movie RETURN doc'), model_name='all-MiniLM-L6-v2')
encoded_genres = GenresEncoder(movie_rec_db.aql.execute('FOR doc IN Movie RETURN doc'))
movie_x = torch.cat((title_emb, encoded_genres), dim=-1)
global data
data = HeteroData()
data['user'].num_nodes = len(users) # Users do not have any features.
data['movie'].x = movie_x
data['user', 'rates', 'movie'].edge_index = edge_index
data['user', 'rates', 'movie'].edge_label = edge_label
# Add user node features for message passing:
data['user'].x = torch.eye(data['user'].num_nodes, device=device)
del data['user'].num_nodes
data = ToUndirected()(data)
del data['movie', 'rev_rates', 'user'].edge_label # Remove "reverse" label.
data = data.to(device)
train_data, val_data, test_data = T.RandomLinkSplit(
num_val=0.1,
num_test=0.1,
neg_sampling_ratio=0.0,
edge_types=[('user', 'rates', 'movie')],
rev_edge_types=[('movie', 'rev_rates', 'user')],
)(data)
return data,train_data, val_data, test_data
def load_model(train_data, val_data, test_data):
model = Model(hidden_channels=32)
with torch.no_grad():
model.encoder(train_data.x_dict, train_data.edge_index_dict)
model.load_state_dict(torch.load('model.pt',map_location=torch.device('cpu')))
model.eval()
return model
def get_recommendation(model,data,user_id):
movies = movie_rec_db.collection('Movie')
total_movies = len(movies)
user_row = torch.tensor([user_id] * total_movies)
all_movie_ids = torch.arange(total_movies)
edge_label_index = torch.stack([user_row, all_movie_ids], dim=0)
pred = model(data.x_dict, data.edge_index_dict,edge_label_index)
pred = pred.clamp(min=0, max=5)
# we will only select movies for the user where the predicting rating is =5
rec_movie_ids = (pred == 5).nonzero(as_tuple=True)
top_ten_recs = [rec_movies for rec_movies in rec_movie_ids[0].tolist()[:10]]
return {'user': user_id, 'rec_movies': top_ten_recs}
def train(train_data, val_data, test_data):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#make weight
weight = torch.bincount(train_data['user', 'movie'].edge_label)
weight = weight.max() / weight
model = Model(hidden_channels=32).to(device)
with torch.no_grad():
model.encoder(train_data.x_dict, train_data.edge_index_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# Train loop
for epoch in range(1, 300):
loss = train()
train_rmse = test(train_data)
val_rmse = test(val_data)
test_rmse = test(test_data)
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train: {train_rmse:.4f}, '
f'Val: {val_rmse:.4f}, Test: {test_rmse:.4f}')
|