import pandas as pd from tqdm import tqdm import numpy as np import itertools import requests import sys from pyvis.network import Network import torch import torch.nn.functional as F from torch.nn import Linear from arango import ArangoClient import torch_geometric.transforms as T from torch_geometric.nn import SAGEConv, to_hetero from torch_geometric.transforms import RandomLinkSplit, ToUndirected from sentence_transformers import SentenceTransformer from torch_geometric.data import HeteroData import yaml import pickle def net_repr_html(self): nodes, edges, height, width, options = self.get_network_data() html = self.template.render(height=height, width=width, nodes=nodes, edges=edges, options=options) return html Network._repr_html_ = net_repr_html #---------------------------------------------- # SAGE model class GNNEncoder(torch.nn.Module): def __init__(self, hidden_channels, out_channels): super().__init__() # these convolutions have been replicated to match the number of edge types self.conv1 = SAGEConv((-1, -1), hidden_channels) self.conv2 = SAGEConv((-1, -1), out_channels) def forward(self, x, edge_index): x = self.conv1(x, edge_index).relu() x = self.conv2(x, edge_index) return x class EdgeDecoder(torch.nn.Module): def __init__(self, hidden_channels): super().__init__() self.lin1 = Linear(2 * hidden_channels, hidden_channels) self.lin2 = Linear(hidden_channels, 1) def forward(self, z_dict, edge_label_index): row, col = edge_label_index # concat user and movie embeddings z = torch.cat([z_dict['user'][row], z_dict['movie'][col]], dim=-1) # concatenated embeddings passed to linear layer z = self.lin1(z).relu() z = self.lin2(z) return z.view(-1) class Model(torch.nn.Module): def __init__(self, hidden_channels): super().__init__() self.encoder = GNNEncoder(hidden_channels, hidden_channels) self.encoder = to_hetero(self.encoder, data.metadata(), aggr='sum') self.decoder = EdgeDecoder(hidden_channels) def forward(self, x_dict, edge_index_dict, edge_label_index): # z_dict contains dictionary of movie and user embeddings returned from GraphSage z_dict = self.encoder(x_dict, edge_index_dict) return self.decoder(z_dict, edge_label_index) #---------------------------------------------- def load_hetero_data(): with open('Hgraph.pkl', 'rb') as file: global data data = pickle.load(file) return data def load_model(data): model = Model(hidden_channels=32) with torch.no_grad(): model.encoder(data.x_dict, data.edge_index_dict) model.load_state_dict(torch.load('model.pt',map_location=torch.device('cpu'))) model.eval() return model global id_map with open('id_map.pkl', 'rb') as file: id_map = pickle.load(file) global m_id with open('m_id.pkl', 'rb') as file: m_id = pickle.load(file) def get_title(idx): return id_map.loc[id_map['movieId'] == m_id[idx]].index[0] def get_recommendation(model,data,user_id): total_movies = 9025 user_row = torch.tensor([user_id] * total_movies) all_movie_ids = torch.arange(total_movies) edge_label_index = torch.stack([user_row, all_movie_ids], dim=0) pred = model(data.x_dict, data.edge_index_dict,edge_label_index) pred = pred.clamp(min=0, max=5) # we will only select movies for the user where the predicting rating is =5 rec_movie_ids = (pred == 5).nonzero(as_tuple=True) top_ten_recs = [rec_movies for rec_movies in rec_movie_ids[0].tolist()[:10]] top_ten_recs = [get_title(movie_idx) for movie_idx in top_ten_recs] return {'user': user_id, 'rec_movies': top_ten_recs} def make_1_hop_graph(data,user_id): a = data["user", "rates", "movie"].edge_index b = data["user", "rates", "movie"].edge_label idxs = (a[0] == user_id).nonzero(as_tuple=True)[0] ratings = b[idxs]#.tolist() movie_idxs = a[1][idxs]#.tolist() n = len(ratings) net = Network(notebook=True) for i in range(n): #print(i) Source = user_id lab = get_title(movie_idxs[i]) Target = movie_idxs[i] + 671 # Addition for sperating movie with user_id weight = ratings[i].item() net.add_node(Source, label=str(Source),color='#FF0000') net.add_node(Target.item(), label=lab) net.add_edge(Source, Target.item(), title=weight) drug_net.save_graph('index.html')