File size: 11,267 Bytes
1b7e88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import json
from abc import ABC
from distutils.util import strtobool
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union

import yaml
from omagent_core.base import BotBase
from omagent_core.models.od.schemas import Target
from omagent_core.services.handlers.sql_data_handler import SQLDataHandler
from omagent_core.utils.error import VQLError
from omagent_core.utils.logger import logging
from omagent_core.utils.plot import Annotator
from PIL import Image
from pydantic import BaseModel, model_validator


class ArgSchema(BaseModel):
    """ArgSchema defines the tool input schema. Only support one layer definition. Please prevent using complex structure."""

    class Config:
        """Configuration for this pydantic object."""

        extra = "allow"
        arbitrary_types_allowed = True

    class ArgInfo(BaseModel):
        description: Optional[str]
        type: str = "str"
        enum: Optional[List] = None
        required: Optional[bool] = True

    @model_validator(mode="before")
    @classmethod
    def validate_all(cls, values):
        for key, value in values.items():
            if type(value) is str:
                values[key] = cls.ArgInfo(name=value)
            elif type(value) is dict:
                values[key] = cls.ArgInfo(**value)
            elif type(value) is cls.ArgInfo:
                pass
            else:
                raise ValueError(
                    "The arg type must be one of string, dict or self.ArgInfo."
                )
        return values

    @classmethod
    def from_file(cls, schema_file: Union[str, Path]):
        if type(schema_file) is str:
            schema_file = Path(schema_file)
        if schema_file.suffix == ".json":
            with open(schema_file, "r") as f:
                schema = json.load(f)
        elif schema_file.suffix == ".yaml":
            with open(schema_file, "r") as f:
                schema = yaml.load(f, Loader=yaml.FullLoader)
        else:
            raise ValueError("Only support json and yaml file.")
        return cls(**schema)

    def generate_schema(self) -> Union[dict, list]:
        required_args = []
        parameters = {}
        for key, value in self.model_dump(exclude_none=True).items():
            parameters[key] = value
            if parameters[key].pop("required"):
                required_args.append(key)
        return parameters, required_args

    def validate_args(self, args: dict) -> dict:
        if type(args) is not dict:
            raise ValueError(
                "ArgSchema validate only support dict, not {}".format(type(args))
            )
        new_args = {}
        required_fields = set(
            [k for k, v in self.model_dump().items() if v["required"]]
        )
        name_mapping = {
            "str": "string",
            "int": "integer",
            "float": "number",
            "bool": "boolean",
        }
        for name, value in args.items():
            if name not in self.model_dump():
                logging.warning(
                    "The input args includes an unnecessary parameter {}. Removed from the args.".format(
                        name
                    )
                )
                continue
            if name_mapping[type(value).__name__] == self.model_dump()[name]["type"]:
                if (
                    self.model_dump()[name]["enum"]
                    and value not in self.model_dump()[name]["enum"]
                ):
                    raise ValueError(
                        "The value of {} should be one of {}, but got {}".format(
                            name, str(self.model_dump()[name]["enum"]), value
                        )
                    )
                new_args[name] = value
            elif self.model_dump()[name]["type"] == "string":
                try:
                    new_args[name] = str(value)
                except:
                    raise ValueError(
                        "Parameter {} type expect a str value, but got a {} {}".format(
                            name, type(value), value
                        )
                    )
            elif self.model_dump()[name]["type"] == "integer":
                try:
                    new_args[name] = int(value)
                except:
                    raise ValueError(
                        "Parameter {} type expect an int value, but got a {} {}".format(
                            name, type(value), value
                        )
                    )
            elif self.model_dump()[name]["type"] == "number":
                try:
                    new_args[name] = float(value)
                except:
                    raise ValueError(
                        "Parameter {} type expect a float value, but got a {} {}".format(
                            name, type(value), value
                        )
                    )
            elif self.model_dump()[name]["type"] == "boolean":
                if type(value) is bool:
                    new_args[name] = value
                else:
                    try:
                        new_args[name] = strtobool(str(value))
                    except:
                        raise ValueError(
                            "Parameter {} type expect a boolean value, but got a {} {}".format(
                                name, type(value), value
                            )
                        )
            else:
                raise ValueError(
                    "Parameter {} type expect one of string, integer, number and boolean, but got a {} {}".format(
                        name, self.model_dump()[name]["type"], type(value), value
                    )
                )

        if required_fields - set(new_args.keys()):
            raise VQLError(
                "The required fields {} are missing.".format(
                    required_fields - set(new_args.keys())
                )
            )
        return new_args


class BaseTool(BotBase, ABC):
    description: str
    func: Optional[Callable] = None
    args_schema: Optional[ArgSchema]
    special_params: Dict = {}

    def model_post_init(self, __context: Any) -> None:
        for _, attr_value in self.__dict__.items():
            if isinstance(attr_value, BotBase):
                attr_value._parent = self

    @property
    def workflow_instance_id(self) -> str:
        if hasattr(self, "_parent"):
            return self._parent.workflow_instance_id
        return None

    @workflow_instance_id.setter
    def workflow_instance_id(self, value: str):
        if hasattr(self, "_parent"):
            self._parent.workflow_instance_id = value

    def _run(self, **input) -> str:
        """Implement this function or pass 'func' arg when initializing."""
        return self.func(**input)

    async def _arun(self, **input) -> str:
        """Implement this function or pass 'func' arg when initializing."""
        return await self.func(**input)

    def run(self, input: Any) -> str:
        if self.args_schema != None:
            if type(input) != dict:
                raise ValueError(
                    "The input type must be dict when args_schema is specified."
                )
            self.args_schema.validate_args(input)
        return self._run(**input, **self.special_params)

    async def arun(self, input: Any) -> str:
        if self.args_schema != None:
            if type(input) != dict:
                raise ValueError(
                    "The input type must be dict when args_schema is specified."
                )
            self.args_schema.validate_args(input)
        return await self._arun(**input, **self.special_params)

    def generate_schema(self):
        if not self.args_schema:
            return {
                "type": "function",
                "description": self.description,
                "function": {
                    "name": self.name,
                    "parameters": {
                        "type": "object",
                        "name": "input",
                        "required": ["input"],
                    },
                },
            }
        else:
            properties, required = self.args_schema.generate_schema()
            return {
                "type": "function",
                "function": {
                    "name": self.name,
                    "description": self.description,
                    "parameters": {
                        "type": "object",
                        "properties": properties,
                        "required": required,
                    },
                },
            }


class BaseModelTool(BaseTool, ABC):
    # data_handler: Optional[SQLDataHandler]

    def visual_prompting(
        self,
        image: Image.Image,
        annotation: List[Target],
        prompting_type: str = "label_on_img",
        include_labels: Union[List, set, tuple] = None,
        exclude_labels: Union[List, set, tuple] = None,
    ) -> List[Image.Image]:
        annotator = Annotator(image)
        for obj in annotation:
            if (exclude_labels is not None and obj.label in exclude_labels) or (
                include_labels is not None and obj.label not in include_labels
            ):
                continue
            if obj.bbox:
                annotator.box_label(obj.bbox, obj.label, color="red")
            # TODO: Add polygon support
        return annotator.result()

    def infer(self, images: List[Image.Image], kwargs) -> List[List[Target]]:
        """The model inference step. Only support OD type detection.

        Args:
            images (List[Image.Image]): The list of input images. Image should be PIL Image object.
            kwargs (dict): The additional arguments for the model.

        Returns:
            List[List[Target]]: The detection results.
        """

    def ainfer(self, images: List[Image.Image], kwargs) -> List[List[Target]]:
        """The async version of model inference step. Only support OD type detection.

        Args:
            images (List[Image.Image]): The list of input images. Image should be PIL Image object.
            kwargs (dict): The additional arguments for the model.

        Returns:
            List[List[Target]]: The detection results.
        """


class MemoryTool(BaseTool):
    memory_handler: Optional[SQLDataHandler]

    def generate_schema(self) -> dict:
        """Generate the data table schema in dict format.

        Returns:
            dict: The data table schema. Including the table name, and the name, data type and additional information of each column.
        """
        table = self.memory_handler.table
        schema = {"table_name": table.__tablename__, "columns": []}
        for column in table.__table__.columns:
            schema["columns"].append(
                {
                    "name": column.name,
                    "type": column.type.__visit_name__,
                    "info": column.info,
                }
            )
        return schema

    def generate_prompt(self):
        pass

    def _run(self):
        self.memory_handler.execute_sql()

    async def _arun(self):
        self.memory_handler.execute_sql()