OmAgent / webpage.py
韩宇
init
1b7e88c
raw
history blame
21.7 kB
import html
import json
import os
import queue
import shutil
import sys
import threading
import uuid
from pathlib import Path
from time import sleep
os.environ['GRADIO_TEMP_DIR'] = os.getcwd()
video_root_path = os.path.join(os.getcwd(), 'video_root')
os.makedirs(video_root_path, exist_ok=True)
from omagent_core.clients.devices.app.callback import AppCallback
from omagent_core.clients.devices.app.input import AppInput
from omagent_core.clients.devices.app.schemas import ContentStatus, MessageType
from omagent_core.engine.automator.task_handler import TaskHandler
from omagent_core.engine.http.models.workflow_status import terminal_status
from omagent_core.engine.workflow.conductor_workflow import ConductorWorkflow
from omagent_core.services.connectors.redis import RedisConnector
from omagent_core.utils.build import build_from_file
from omagent_core.utils.container import container
from omagent_core.utils.logger import logging
from omagent_core.utils.registry import registry
registry.import_module()
container.register_connector(name="redis_stream_client", connector=RedisConnector)
# container.register_stm(stm='RedisSTM')
container.register_callback(callback=AppCallback)
container.register_input(input=AppInput)
import gradio as gr
class WebpageClient:
def __init__(
self,
interactor: ConductorWorkflow = None,
processor: ConductorWorkflow = None,
config_path: str = "./config",
workers: list = [],
) -> None:
self._interactor = interactor
self._processor = processor
self._config_path = config_path
self._workers = workers
self._workflow_instance_id = None
self._worker_config = build_from_file(self._config_path)
self._task_to_domain = {}
self._incomplete_message = ""
self._custom_css = """
#OmAgent {
height: 100vh !important;
max-height: calc(100vh - 190px) !important;
overflow-y: auto;
}
.running-message {
margin: 0;
padding: 2px 4px;
white-space: pre-wrap;
word-wrap: break-word;
font-family: inherit;
}
/* Remove the background and border of the message box */
.message-wrap {
background: none !important;
border: none !important;
padding: 0 !important;
margin: 0 !important;
}
/* Remove the bubble style of the running message */
.message:has(.running-message) {
background: none !important;
border: none !important;
padding: 0 !important;
box-shadow: none !important;
}
"""
self.workflow_instance_id = str(uuid.uuid4())
self.processor_instance_id = str(uuid.uuid4())
worker_config = build_from_file(self._config_path)
self.initialization(workers, worker_config)
def initialization(self, workers, worker_config):
self.workers = {}
for worker in workers:
worker.workflow_instance_id = self.workflow_instance_id
self.workers[type(worker).__name__] = worker
for config in worker_config:
worker_cls = registry.get_worker(config['name'])
worker = worker_cls(**config)
worker.workflow_instance_id = self.workflow_instance_id
self.workers[config['name']] = worker
def gradio_app(self):
with gr.Blocks() as demo:
def load_local_video() -> dict:
result = {}
for root, _, files in os.walk(video_root_path):
for file in filter(lambda x: x.split('.')[-1] in (
'mp4', 'avi', 'mov', 'wmv', 'flv', 'mkv', 'webm', 'm4v'), files):
file_obs_path = os.path.join(root, file)
result[Path(file_obs_path).name] = file_obs_path
return result
video_dict = load_local_video()
current_video = None
state = gr.State(value={
'video_dict': video_dict,
'current_video': current_video
})
with gr.Row():
with gr.Column():
with gr.Column():
def display_video_map(video_title):
# change display video
video_path = state.value.get('video_dict', {}).get(video_title)
exception_queue = queue.Queue()
workflow_input = {'video_path': video_path}
processor_result = None
def run_workflow(workflow_input):
nonlocal processor_result
try:
processor_result = self._processor.start_workflow_with_input(
workflow_input=workflow_input, workers=self.workers
)
except Exception as e:
exception_queue.put(e) # add exception to queue
logging.error(f"Error starting workflow: {e}")
raise e
workflow_thread = threading.Thread(target=run_workflow, args=(workflow_input,), daemon=True)
workflow_thread.start()
processor_workflow_instance_id = self.processor_instance_id
while True:
status = self._processor.get_workflow(
workflow_id=processor_workflow_instance_id).status
if status in terminal_status:
break
sleep(1)
state.value['video_dict'] = load_local_video()
state.value.update(current_video=video_path)
state.value.update(processor_result=processor_result)
state.value.update(processor_workflow_instance_id=processor_workflow_instance_id)
return video_path, state
select_video = gr.Dropdown(
state.value['video_dict'].keys(),
value=None
)
display_video = gr.Video(
state.value['current_video'],
)
select_video.change(
fn=display_video_map,
inputs=[select_video],
outputs=[display_video, state]
)
with gr.Column():
chatbot = gr.Chatbot(
type="messages",
)
chat_input = gr.Textbox(
interactive=True,
placeholder="Enter message...",
show_label=False,
)
chat_msg = chat_input.submit(
self.add_message,
[chatbot, chat_input, state],
[chatbot, chat_input]
)
bot_msg = chat_msg.then(
self.bot, (chatbot, state), chatbot, api_name="bot_response"
)
bot_msg.then(
lambda: gr.Textbox(interactive=True), None, [chat_input]
)
demo.launch(
max_file_size='1gb'
)
def start_interactor(self):
try:
self.gradio_app()
except KeyboardInterrupt:
logging.info("\nDetected Ctrl+C, stopping workflow...")
if self._workflow_instance_id is not None:
self._interactor._executor.terminate(
workflow_id=self._workflow_instance_id
)
raise
def stop_interactor(self):
# self._task_handler_interactor.stop_processes()
print("stop_interactor")
sys.exit(0)
def start_processor(self):
self._task_handler_processor = TaskHandler(
worker_config=self._worker_config, workers=self._workers, task_to_domain=self._task_to_domain
)
self._task_handler_processor.start_processes()
try:
with gr.Blocks(title="OmAgent", css=self._custom_css) as chat_interface:
chatbot = gr.Chatbot(
elem_id="OmAgent",
bubble_full_width=False,
type="messages",
height="100%",
)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter message or upload file...",
show_label=False,
)
chat_msg = chat_input.submit(
self.add_processor_message,
[chatbot, chat_input],
[chatbot, chat_input],
)
bot_msg = chat_msg.then(
self.processor_bot, chatbot, chatbot, api_name="bot_response"
)
bot_msg.then(
lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]
)
chat_interface.launch(server_port=7861)
except KeyboardInterrupt:
logging.info("\nDetected Ctrl+C, stopping workflow...")
if self._workflow_instance_id is not None:
self._processor._executor.terminate(
workflow_id=self._workflow_instance_id
)
raise
def stop_processor(self):
self._task_handler_processor.stop_processes()
def add_message(self, history, message, state):
if isinstance(state, gr.State):
if state.value.get('current_video') is None:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": 'Please select a video'})
return history, gr.Textbox(value=None, interactive=False)
else:
if state.get('current_video') is None:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": 'Please select a video'})
return history, gr.Textbox(value=None, interactive=False)
if self._workflow_instance_id is None:
workflow_input = {
'question': message,
"video_md5": state.value.get('processor_result', {}).get("video_md5"),
"video_path": state.value.get('processor_result', {}).get("video_path"),
"instance_id": state.value.get('processor_result', {}).get("instance_id"),
"processor_workflow_instance_id": state.value.get("processor_workflow_instance_id")
}
exception_queue = queue.Queue()
def run_workflow(workflow_input):
try:
self._interactor.start_workflow_with_input(
workflow_input=workflow_input, workers=self.workers
)
except Exception as e:
exception_queue.put(e) # add exception to queue
logging.error(f"Error starting workflow: {e}")
raise e
workflow_thread = threading.Thread(target=run_workflow, args=(workflow_input,),daemon=True)
workflow_thread.start()
self._workflow_instance_id = self.workflow_instance_id
contents = []
history.append({"role": "user", "content": message})
contents.append({"data": message, "type": "text"})
result = {
"agent_id": self._workflow_instance_id,
"messages": [{"role": "user", "content": contents}],
"kwargs": {},
}
container.get_connector("redis_stream_client")._client.xadd(
f"{self._workflow_instance_id}_input",
{"payload": json.dumps(result, ensure_ascii=False)},
)
return history, gr.Textbox(value=None, interactive=False)
def add_processor_message(self, history, message):
if self._workflow_instance_id is None:
self._workflow_instance_id = self._processor.start_workflow_with_input(
workflow_input={}, task_to_domain=self._task_to_domain
)
image_items = []
for idx, x in enumerate(message["files"]):
history.append({"role": "user", "content": {"path": x}})
image_items.append(
{"type": "image_url", "resource_id": str(idx), "data": str(x)}
)
result = {"content": image_items}
container.get_connector("redis_stream_client")._client.xadd(
f"image_process", {"payload": json.dumps(result, ensure_ascii=False)}
)
return history, gr.MultimodalTextbox(value=None, interactive=False)
def bot(self, history, state):
if isinstance(state, gr.State):
if state.value.get('current_video') is None:
yield history
return
else:
if state.get('current_video') is None:
yield history
return
stream_name = f"{self._workflow_instance_id}_output"
consumer_name = f"{self._workflow_instance_id}_agent" # consumer name
group_name = "omappagent" # replace with your consumer group name
running_stream_name = f"{self._workflow_instance_id}_running"
self._check_redis_stream_exist(stream_name, group_name)
self._check_redis_stream_exist(running_stream_name, group_name)
while True:
# read running stream
running_messages = self._get_redis_stream_message(
group_name, consumer_name, running_stream_name
)
for stream, message_list in running_messages:
for message_id, message in message_list:
payload_data = self._get_message_payload(message)
if payload_data is None:
continue
progress = html.escape(payload_data.get("progress", ""))
message = html.escape(payload_data.get("message", ""))
formatted_message = (
f'<pre class="running-message">{progress}: {message}</pre>'
)
history.append({"role": "assistant", "content": formatted_message})
yield history
container.get_connector("redis_stream_client")._client.xack(
running_stream_name, group_name, message_id
)
# read output stream
messages = self._get_redis_stream_message(
group_name, consumer_name, stream_name
)
finish_flag = False
for stream, message_list in messages:
for message_id, message in message_list:
incomplete_flag = False
payload_data = self._get_message_payload(message)
if payload_data is None:
continue
if payload_data["content_status"] == ContentStatus.INCOMPLETE.value:
incomplete_flag = True
message_item = payload_data["message"]
if message_item["type"] == MessageType.IMAGE_URL.value:
history.append(
{
"role": "assistant",
"content": {"path": message_item["content"]},
}
)
else:
if incomplete_flag:
self._incomplete_message = (
self._incomplete_message + message_item["content"]
)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] = self._incomplete_message
else:
history.append(
{
"role": "assistant",
"content": self._incomplete_message,
}
)
else:
if self._incomplete_message != "":
self._incomplete_message = (
self._incomplete_message + message_item["content"]
)
if history and history[-1]["role"] == "assistant":
history[-1]["content"] = self._incomplete_message
else:
history.append(
{
"role": "assistant",
"content": self._incomplete_message,
}
)
self._incomplete_message = ""
else:
history.append(
{
"role": "assistant",
"content": message_item["content"],
}
)
yield history
container.get_connector("redis_stream_client")._client.xack(
stream_name, group_name, message_id
)
# check finish flag
if (
"interaction_type" in payload_data
and payload_data["interaction_type"] == 1
):
finish_flag = True
if (
"content_status" in payload_data
and payload_data["content_status"]
== ContentStatus.END_ANSWER.value
):
self._workflow_instance_id = None
finish_flag = True
if finish_flag:
break
sleep(0.01)
def processor_bot(self, history: list):
history.append({"role": "assistant", "content": f"processing..."})
yield history
while True:
status = self._processor.get_workflow(
workflow_id=self._workflow_instance_id
).status
if status in terminal_status:
history.append({"role": "assistant", "content": f"completed"})
yield history
self._workflow_instance_id = None
break
sleep(0.01)
def _get_redis_stream_message(
self, group_name: str, consumer_name: str, stream_name: str
):
messages = container.get_connector("redis_stream_client")._client.xreadgroup(
group_name, consumer_name, {stream_name: ">"}, count=1
)
messages = [
(
stream,
[
(
message_id,
{
k.decode("utf-8"): v.decode("utf-8")
for k, v in message.items()
},
)
for message_id, message in message_list
],
)
for stream, message_list in messages
]
return messages
def _check_redis_stream_exist(self, stream_name: str, group_name: str):
try:
container.get_connector("redis_stream_client")._client.xgroup_create(
stream_name, group_name, id="0", mkstream=True
)
except Exception as e:
logging.debug(f"Consumer group may already exist: {e}")
def _get_message_payload(self, message: dict):
logging.info(f"Received running message: {message}")
payload = message.get("payload")
# check payload data
if not payload:
logging.error("Payload is empty")
return None
try:
payload_data = json.loads(payload)
except json.JSONDecodeError as e:
logging.error(f"Payload is not a valid JSON: {e}")
return None
return payload_data