# Local-ai You can use Local-ai to run your own model locally. Following the instruction of [Local-ai](https://github.com/mudler/LocalAI) to install Local-ai. ### Download Local-ai models Download [Whisper](https://huggingface.co/ggerganov/whisper.cpp) and [Embedding model](https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF). Then move the model checkpoint file to the /usr/share/local-ai/models/. **Other path for models is not supported.** ### Modify config files Create Local-ai config files. Embedding model yaml ```yaml name: text-embedding-ada-002 backend: llama-cpp embeddings: true parameters: model: llama-3.2-1b-instruct-q4_k_m.gguf # model file name in /usr/share/local-ai/models/ ``` Whisper yaml ```yaml name: whisper backend: whisper parameters: model: ggml-model-whisper-base.en.bin # model file name in /usr/share/local-ai/models/ ``` ### run the model First run ```bash local-ai run ``` and ```bash local-ai run ``` to initially link yaml file to the model. Then next time only run ```bash local-ai run ``` can load two models. **Make sure get model names right, or embedding model may get empty result.** ![local-ai get model names right](images/local-ai.png) ### Modify the yaml of OmAgent Modify ./configs/llms/json_res.yml ```yaml name: OpenaiTextEmbeddingV3 model_id: text-embedding-ada-002 dim: 2048 endpoint: ${env| custom_openai_endpoint, http://localhost:8080/v1} api_key: ${env| custom_openai_key, openai_api_key} # api_key is not needed ``` and ./configs/workers/video_preprocessor.yml ```yaml name: VideoPreprocessor llm: ${sub|gpt4o} use_cache: true scene_detect_threshold: 27 frame_extraction_interval: 5 stt: name: STT endpoint: http://localhost:8080/v1 api_key: ${env| custom_openai_key, openai_api_key} model_id: whisper output_parser: name: DictParser text_encoder: ${sub| text_encoder} ``` and set dim in ./container.yaml ```yaml VideoMilvusLTM: name: VideoMilvusLTM id: value: null env_var: ID storage_name: value: yyl_video_ltm env_var: STORAGE_NAME dim: value: 2048 env_var: DIM ``` Then you can use your model locally.