import joblib import pandas as pd import streamlit as st SPENDING_DICT = {'Low': 1, 'Average': 2, 'High': 3, } model = joblib.load('model.joblib')# unique_values = joblib.load('unique_value.joblib')# unique_gender = unique_values["Gender"] unique_married = unique_values["Ever_Married"] unique_graduated = unique_values["Graduated"] unique_profession = unique_values["Profession"] unique_spending = unique_values["Spending_Score"] def main(): st.title("Segmentation") with st.form("questionaire"): gender = st.selectbox("Gender",options=unique_gender)# user's input married = st.selectbox("Married",options=unique_married)# user's input age = st.slider("Age",min_value=10,max_value=60)# user's input graduated = st.selectbox("Graduated",options=unique_graduated)# user's input profession = st.selectbox("Profession",options=unique_profession)# user's input workEX = st.slider("Work Experience",min_value=0,max_value=15)# user's input spending = st.selectbox("Spending Score",options=unique_spending)# user's input family = st.slider("Family",min_value=0,max_value=10)# user's input clicked = st.form_submit_button("Predict segmentation") if clicked: result=model.predict(pd.DataFrame({"Age": [age], "Work_Experience": [workEX], "Spending_Score": [SPENDING_DICT[spending]], "Gender": [gender], "Graduated": [graduated], "Profession": [profession], "Ever_Married": [married], "Family_Size": [family]})) result = "A" if result[0] == 0 else "Not A" st.success("Your segmentation is "+result) if __name__=="__main__": main() ##