File size: 4,894 Bytes
baba88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4d7c3
baba88b
 
e239882
baba88b
 
 
 
 
 
 
2aed122
 
 
 
 
baba88b
2aed122
 
 
 
 
baba88b
2aed122
baba88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189d9cb
baba88b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import whisper
from transformers import pipeline

model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")

def analyze_sentiment(text):
    results = sentiment_analysis(text)
    sentiment_results = {result['label']: result['score'] for result in results}
    return sentiment_results

def get_sentiment_emoji(sentiment):
    # Define the emojis corresponding to each sentiment
    emoji_mapping = {
        "disappointment": "😞",
        "sadness": "😢",
        "annoyance": "😠",
        "neutral": "😐",
        "disapproval": "👎",
        "realization": "😮",
        "nervousness": "😬",
        "approval": "👍",
        "joy": "😄",
        "anger": "😡",
        "embarrassment": "😳",
        "caring": "🤗",
        "remorse": "😔",
        "disgust": "🤢",
        "grief": "😥",
        "confusion": "😕",
        "relief": "😌",
        "desire": "😍",
        "admiration": "😌",
        "optimism": "😊",
        "fear": "😨",
        "love": "❤️",
        "excitement": "🎉",
        "curiosity": "🤔",
        "amusement": "😄",
        "surprise": "😲",
        "gratitude": "🙏",
        "pride": "🦁"
    }
    return emoji_mapping.get(sentiment, "")

def display_sentiment_results(sentiment_results, option):
    sentiment_text = ""
    for sentiment, score in sentiment_results.items():
        emoji = get_sentiment_emoji(sentiment)
        if option == "Sentiment Only":
            sentiment_text += f"{sentiment} {emoji}\n"
        elif option == "Sentiment + Score":
            sentiment_text += f"{sentiment} {emoji}: {score}\n"
    return sentiment_text

def inference(audio, sentiment_option):
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)

    mel = whisper.log_mel_spectrogram(audio).to(model.device)

    _, probs = model.detect_language(mel)
    lang = max(probs, key=probs.get)

    options = whisper.DecodingOptions(fp16=False)
    result = whisper.decode(model, mel, options)

    sentiment_results = analyze_sentiment(result.text)
    sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)

    return lang.upper(), result.text, sentiment_output

title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>"""
image_path = "thmbnail.jpg"
description = """
💻 This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br>
<br>
⚙️ Components of the tool:<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Real-time multilingual speech recognition<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Language identification<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Sentiment analysis of the transcriptions<br>
<br>
🎯 The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br>
<br>

😃 The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
<br>

✅ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
<br>

❓ Use the microphone for real-time speech recognition.<br>
<br>

⚡️ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br>

"""

custom_css = """
#banner-image {
    display: block;
    margin-left: auto;
    margin-right: auto;
}
#chat-message {
    font-size: 14px;
    min-height: 300px;
}
"""

block = gr.Blocks(css=custom_css)

with block:
    gr.HTML(title)

    with gr.Row():
        with gr.Column():
            gr.Image(image_path, elem_id="banner-image", show_label=False)
        with gr.Column():
            gr.HTML(description)

    with gr.Group():
        with gr.Box():
            audio = gr.Audio(
                label="Input Audio",
                show_label=False,
                source="microphone",
                type="filepath"
            )

            sentiment_option = gr.Radio(
                choices=["Sentiment Only", "Sentiment + Score"],
                label="Select an option",
                default="Sentiment Only"
            )

            btn = gr.Button("Transcribe")

        lang_str = gr.Textbox(label="Language")

        text = gr.Textbox(label="Transcription")

        sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)

        btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output])

        gr.HTML('''
        <div class="footer">
            <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
            </p>
        </div>
        ''') 

block.launch()