Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,984 Bytes
0a6031f 95b168f 93f83a7 95b168f 93f83a7 95b168f 3e2f27a 95b168f 3e2f27a 95b168f 1c5a965 9754000 1c5a965 9754000 1c5a965 eaae6bc 1c5a965 9754000 eaae6bc 1c5a965 9754000 1c5a965 95b168f 9754000 95b168f 9754000 95b168f fce5225 95b168f d6505da 1c5a965 95b168f 9754000 95b168f 9c20447 9754000 95b168f 9754000 95b168f 9754000 95b168f b3fef9e 95b168f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import spaces
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
import db_examples
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from briarmbg import BriaRMBG
from enum import Enum
# from torch.hub import download_url_to_file
# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
# Change UNet
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
# Load
model_path = './models/iclight_sd15_fc.safetensors'
# download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', dst=model_path)
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged, keys
# Device
device = torch.device('cuda')
text_encoder = text_encoder.to(device=device, dtype=torch.float16)
vae = vae.to(device=device, dtype=torch.bfloat16)
unet = unet.to(device=device, dtype=torch.float16)
rmbg = rmbg.to(device=device, dtype=torch.float32)
# SDP
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Samplers
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
euler_a_scheduler = EulerAncestralDiscreteScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
steps_offset=1
)
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
H, W, C = img.shape
assert C == 3
k = (256.0 / float(H * W)) ** 0.5
feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
alpha = rmbg(feed)[0][0]
alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
alpha = alpha.movedim(1, -1)[0]
alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
return result.clip(0, 255).astype(np.uint8), alpha
@torch.inference_mode()
def merge_alpha(img, sigma=0.0):
if img is None:
return None
if len(img.shape) == 2:
img = np.stack((img,)*3, axis=-1)
H, W, C = img.shape
print(f"img.shape: {img.shape}")
if C == 3:
img, _ = run_rmbg(img)
return img
elif C == 4:
rgb = img[:, :, :3].astype(np.float32)
alpha = img[:, :, 3].astype(np.float32) / 255.0
result = rgb * alpha[:, :, np.newaxis] + 255 * (1 - alpha[:, :, np.newaxis])
if sigma != 0:
result += sigma * alpha[:, :, np.newaxis]
return np.clip(result, 0, 255).astype(np.uint8)
else:
raise ValueError(f"Unexpected number of channels: {C}")
@torch.inference_mode()
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
bg_source = BGSource(bg_source)
input_bg = None
if bg_source == BGSource.NONE:
pass
elif bg_source == BGSource.LEFT:
gradient = np.linspace(255, 0, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(0, 255, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(255, 0, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(0, 255, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise 'Wrong initial latent!'
rng = torch.Generator(device=device).manual_seed(int(seed))
#fg = input_fg
fg = resize_and_center_crop(input_fg, image_width, image_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
if input_bg is None:
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
else:
#bg = input_bg
bg = resize_and_center_crop(input_bg, image_width, image_height)
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype)
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
latents = i2i_pipe(
image=bg_latent,
strength=lowres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / lowres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [resize_without_crop(
image=p,
target_width=int(round(image_width * highres_scale / 64.0) * 64),
target_height=int(round(image_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
return pytorch2numpy(pixels)
@spaces.GPU(duration=175)
@torch.inference_mode()
def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
#input_fg, matting = run_rmbg(input_fg)
input_fg = merge_alpha(input_fg)
results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source)
return input_fg, results
quick_prompts = [
'sunshine from window',
'neon light, city',
'sunset over sea',
'golden time',
'sci-fi RGB glowing, cyberpunk',
'natural lighting',
'warm atmosphere, at home, bedroom',
'magic lit',
'evil, gothic, Yharnam',
'light and shadow',
'shadow from window',
'soft studio lighting',
'home atmosphere, cozy bedroom illumination',
'neon, Wong Kar-wai, warm'
]
quick_prompts = [[x] for x in quick_prompts]
quick_subjects = [
'beautiful woman, detailed face',
'handsome man, detailed face',
]
quick_subjects = [[x] for x in quick_subjects]
class BGSource(Enum):
NONE = "None"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## wow dub")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Image(sources='upload', type="numpy", label="Image", image_mode='RGBA')
output_bg = gr.Image(type="numpy", label="Preprocessed Foreground")
prompt = gr.Textbox(label="Prompt")
bg_source = gr.Radio(choices=[e.value for e in BGSource],
value=BGSource.NONE.value,
label="Lighting Preference (Initial Latent)", type='value')
example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt])
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt])
relight_button = gr.Button(value="Relight")
with gr.Group():
with gr.Row():
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=2048, value=512, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=2048, value=640, step=64)
with gr.Accordion("Advanced options", open=False):
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01)
lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01)
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
with gr.Column():
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs')
with gr.Row():
dummy_image_for_outputs = gr.Image(visible=False, label='Result')
ips = [input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source]
relight_button.click(fn=process_relight, inputs=ips, outputs=[output_bg, result_gallery])
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
block.launch(server_name='0.0.0.0')
|