Freak-ppa's picture
Upload 94 files
dc5c77a verified
raw
history blame
20.8 kB
import copy
import random
import torch
import torch.nn as nn
from transformers import CLIPTokenizer
from typing import Any, List, Optional, Union
class TokenizerWrapper:
"""Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer
currently. This wrapper is modified from https://github.com/huggingface/dif
fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders.
py#L358 # noqa.
Args:
from_pretrained (Union[str, os.PathLike], optional): The *model id*
of a pretrained model or a path to a *directory* containing
model weights and config. Defaults to None.
from_config (Union[str, os.PathLike], optional): The *model id*
of a pretrained model or a path to a *directory* containing
model weights and config. Defaults to None.
*args, **kwargs: If `from_pretrained` is passed, *args and **kwargs
will be passed to `from_pretrained` function. Otherwise, *args
and **kwargs will be used to initialize the model by
`self._module_cls(*args, **kwargs)`.
"""
def __init__(self, tokenizer: CLIPTokenizer):
self.wrapped = tokenizer
self.token_map = {}
def __getattr__(self, name: str) -> Any:
if name in self.__dict__:
return getattr(self, name)
#if name == "wrapped":
# return getattr(self, 'wrapped')#super().__getattr__("wrapped")
try:
return getattr(self.wrapped, name)
except AttributeError:
raise AttributeError(
"'name' cannot be found in both "
f"'{self.__class__.__name__}' and "
f"'{self.__class__.__name__}.tokenizer'."
)
def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
"""Attempt to add tokens to the tokenizer.
Args:
tokens (Union[str, List[str]]): The tokens to be added.
"""
num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
assert num_added_tokens != 0, (
f"The tokenizer already contains the token {tokens}. Please pass "
"a different `placeholder_token` that is not already in the "
"tokenizer."
)
def get_token_info(self, token: str) -> dict:
"""Get the information of a token, including its start and end index in
the current tokenizer.
Args:
token (str): The token to be queried.
Returns:
dict: The information of the token, including its start and end
index in current tokenizer.
"""
token_ids = self.__call__(token).input_ids
start, end = token_ids[1], token_ids[-2] + 1
return {"name": token, "start": start, "end": end}
def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs):
"""Add placeholder tokens to the tokenizer.
Args:
placeholder_token (str): The placeholder token to be added.
num_vec_per_token (int, optional): The number of vectors of
the added placeholder token.
*args, **kwargs: The arguments for `self.wrapped.add_tokens`.
"""
output = []
if num_vec_per_token == 1:
self.try_adding_tokens(placeholder_token, *args, **kwargs)
output.append(placeholder_token)
else:
output = []
for i in range(num_vec_per_token):
ith_token = placeholder_token + f"_{i}"
self.try_adding_tokens(ith_token, *args, **kwargs)
output.append(ith_token)
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
f"The tokenizer already has placeholder token {token} "
f"that can get confused with {placeholder_token} "
"keep placeholder tokens independent"
)
self.token_map[placeholder_token] = output
def replace_placeholder_tokens_in_text(
self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0
) -> Union[str, List[str]]:
"""Replace the keywords in text with placeholder tokens. This function
will be called in `self.__call__` and `self.encode`.
Args:
text (Union[str, List[str]]): The text to be processed.
vector_shuffle (bool, optional): Whether to shuffle the vectors.
Defaults to False.
prop_tokens_to_load (float, optional): The proportion of tokens to
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
Returns:
Union[str, List[str]]: The processed text.
"""
if isinstance(text, list):
output = []
for i in range(len(text)):
output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle))
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
tokens = self.token_map[placeholder_token]
tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
if vector_shuffle:
tokens = copy.copy(tokens)
random.shuffle(tokens)
text = text.replace(placeholder_token, " ".join(tokens))
return text
def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]:
"""Replace the placeholder tokens in text with the original keywords.
This function will be called in `self.decode`.
Args:
text (Union[str, List[str]]): The text to be processed.
Returns:
Union[str, List[str]]: The processed text.
"""
if isinstance(text, list):
output = []
for i in range(len(text)):
output.append(self.replace_text_with_placeholder_tokens(text[i]))
return output
for placeholder_token, tokens in self.token_map.items():
merged_tokens = " ".join(tokens)
if merged_tokens in text:
text = text.replace(merged_tokens, placeholder_token)
return text
def __call__(
self,
text: Union[str, List[str]],
*args,
vector_shuffle: bool = False,
prop_tokens_to_load: float = 1.0,
**kwargs,
):
"""The call function of the wrapper.
Args:
text (Union[str, List[str]]): The text to be tokenized.
vector_shuffle (bool, optional): Whether to shuffle the vectors.
Defaults to False.
prop_tokens_to_load (float, optional): The proportion of tokens to
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
*args, **kwargs: The arguments for `self.wrapped.__call__`.
"""
replaced_text = self.replace_placeholder_tokens_in_text(
text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
)
return self.wrapped.__call__(replaced_text, *args, **kwargs)
def encode(self, text: Union[str, List[str]], *args, **kwargs):
"""Encode the passed text to token index.
Args:
text (Union[str, List[str]]): The text to be encode.
*args, **kwargs: The arguments for `self.wrapped.__call__`.
"""
replaced_text = self.replace_placeholder_tokens_in_text(text)
return self.wrapped(replaced_text, *args, **kwargs)
def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]:
"""Decode the token index to text.
Args:
token_ids: The token index to be decoded.
return_raw: Whether keep the placeholder token in the text.
Defaults to False.
*args, **kwargs: The arguments for `self.wrapped.decode`.
Returns:
Union[str, List[str]]: The decoded text.
"""
text = self.wrapped.decode(token_ids, *args, **kwargs)
if return_raw:
return text
replaced_text = self.replace_text_with_placeholder_tokens(text)
return replaced_text
def __repr__(self):
"""The representation of the wrapper."""
s = super().__repr__()
prefix = f"Wrapped Module Class: {self._module_cls}\n"
prefix += f"Wrapped Module Name: {self._module_name}\n"
if self._from_pretrained:
prefix += f"From Pretrained: {self._from_pretrained}\n"
s = prefix + s
return s
class EmbeddingLayerWithFixes(nn.Module):
"""The revised embedding layer to support external embeddings. This design
of this class is inspired by https://github.com/AUTOMATIC1111/stable-
diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
jack.py#L224 # noqa.
Args:
wrapped (nn.Emebdding): The embedding layer to be wrapped.
external_embeddings (Union[dict, List[dict]], optional): The external
embeddings added to this layer. Defaults to None.
"""
def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None):
super().__init__()
self.wrapped = wrapped
self.num_embeddings = wrapped.weight.shape[0]
self.external_embeddings = []
if external_embeddings:
self.add_embeddings(external_embeddings)
self.trainable_embeddings = nn.ParameterDict()
@property
def weight(self):
"""Get the weight of wrapped embedding layer."""
return self.wrapped.weight
def check_duplicate_names(self, embeddings: List[dict]):
"""Check whether duplicate names exist in list of 'external
embeddings'.
Args:
embeddings (List[dict]): A list of embedding to be check.
"""
names = [emb["name"] for emb in embeddings]
assert len(names) == len(set(names)), (
"Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
)
def check_ids_overlap(self, embeddings):
"""Check whether overlap exist in token ids of 'external_embeddings'.
Args:
embeddings (List[dict]): A list of embedding to be check.
"""
ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
ids_range.sort() # sort by 'start'
# check if 'end' has overlapping
for idx in range(len(ids_range) - 1):
name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
assert ids_range[idx][1] <= ids_range[idx + 1][0], (
f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
)
def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
"""Add external embeddings to this layer.
Use case:
>>> 1. Add token to tokenizer and get the token id.
>>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
>>> # 'how much' in kiswahili
>>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
>>>
>>> 2. Add external embeddings to the model.
>>> new_embedding = {
>>> 'name': 'ngapi', # 'how much' in kiswahili
>>> 'embedding': torch.ones(1, 15) * 4,
>>> 'start': tokenizer.get_token_info('kwaheri')['start'],
>>> 'end': tokenizer.get_token_info('kwaheri')['end'],
>>> 'trainable': False # if True, will registry as a parameter
>>> }
>>> embedding_layer = nn.Embedding(10, 15)
>>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
>>> embedding_layer_wrapper.add_embeddings(new_embedding)
>>>
>>> 3. Forward tokenizer and embedding layer!
>>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
>>> input_ids = tokenizer(
>>> input_text, padding='max_length', truncation=True,
>>> return_tensors='pt')['input_ids']
>>> out_feat = embedding_layer_wrapper(input_ids)
>>>
>>> 4. Let's validate the result!
>>> assert (out_feat[0, 3: 7] == 2.3).all()
>>> assert (out_feat[2, 5: 9] == 2.3).all()
Args:
embeddings (Union[dict, list[dict]]): The external embeddings to
be added. Each dict must contain the following 4 fields: 'name'
(the name of this embedding), 'embedding' (the embedding
tensor), 'start' (the start token id of this embedding), 'end'
(the end token id of this embedding). For example:
`{name: NAME, start: START, end: END, embedding: torch.Tensor}`
"""
if isinstance(embeddings, dict):
embeddings = [embeddings]
self.external_embeddings += embeddings
self.check_duplicate_names(self.external_embeddings)
self.check_ids_overlap(self.external_embeddings)
# set for trainable
added_trainable_emb_info = []
for embedding in embeddings:
trainable = embedding.get("trainable", False)
if trainable:
name = embedding["name"]
embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
self.trainable_embeddings[name] = embedding["embedding"]
added_trainable_emb_info.append(name)
added_emb_info = [emb["name"] for emb in embeddings]
added_emb_info = ", ".join(added_emb_info)
print(f"Successfully add external embeddings: {added_emb_info}.", "current")
if added_trainable_emb_info:
added_trainable_emb_info = ", ".join(added_trainable_emb_info)
print("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current")
def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
"""Replace external input ids to 0.
Args:
input_ids (torch.Tensor): The input ids to be replaced.
Returns:
torch.Tensor: The replaced input ids.
"""
input_ids_fwd = input_ids.clone()
input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
return input_ids_fwd
def replace_embeddings(
self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
) -> torch.Tensor:
"""Replace external embedding to the embedding layer. Noted that, in
this function we use `torch.cat` to avoid inplace modification.
Args:
input_ids (torch.Tensor): The original token ids. Shape like
[LENGTH, ].
embedding (torch.Tensor): The embedding of token ids after
`replace_input_ids` function.
external_embedding (dict): The external embedding to be replaced.
Returns:
torch.Tensor: The replaced embedding.
"""
new_embedding = []
name = external_embedding["name"]
start = external_embedding["start"]
end = external_embedding["end"]
target_ids_to_replace = [i for i in range(start, end)]
ext_emb = external_embedding["embedding"].to(embedding.device)
# do not need to replace
if not (input_ids == start).any():
return embedding
# start replace
s_idx, e_idx = 0, 0
while e_idx < len(input_ids):
if input_ids[e_idx] == start:
if e_idx != 0:
# add embedding do not need to replace
new_embedding.append(embedding[s_idx:e_idx])
# check if the next embedding need to replace is valid
actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]]
assert actually_ids_to_replace == target_ids_to_replace, (
f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
f"Expect '{target_ids_to_replace}' for embedding "
f"'{name}' but found '{actually_ids_to_replace}'."
)
new_embedding.append(ext_emb)
s_idx = e_idx + end - start
e_idx = s_idx + 1
else:
e_idx += 1
if e_idx == len(input_ids):
new_embedding.append(embedding[s_idx:e_idx])
return torch.cat(new_embedding, dim=0)
def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None, out_dtype = None):
"""The forward function.
Args:
input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
[LENGTH, ].
external_embeddings (Optional[List[dict]]): The external
embeddings. If not passed, only `self.external_embeddings`
will be used. Defaults to None.
input_ids: shape like [bz, LENGTH] or [LENGTH].
"""
assert input_ids.ndim in [1, 2]
if input_ids.ndim == 1:
input_ids = input_ids.unsqueeze(0)
if external_embeddings is None and not self.external_embeddings:
return self.wrapped(input_ids, out_dtype=out_dtype)
input_ids_fwd = self.replace_input_ids(input_ids)
inputs_embeds = self.wrapped(input_ids_fwd)
vecs = []
if external_embeddings is None:
external_embeddings = []
elif isinstance(external_embeddings, dict):
external_embeddings = [external_embeddings]
embeddings = self.external_embeddings + external_embeddings
for input_id, embedding in zip(input_ids, inputs_embeds):
new_embedding = embedding
for external_embedding in embeddings:
new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding)
vecs.append(new_embedding)
return torch.stack(vecs).to(out_dtype)
def add_tokens(
tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1
):
"""Add token for training.
# TODO: support add tokens as dict, then we can load pretrained tokens.
"""
if initialize_tokens is not None:
assert len(initialize_tokens) == len(
placeholder_tokens
), "placeholder_token should be the same length as initialize_token"
for ii in range(len(placeholder_tokens)):
tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token)
# text_encoder.set_embedding_layer()
embedding_layer = text_encoder.text_model.embeddings.token_embedding
text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer)
embedding_layer = text_encoder.text_model.embeddings.token_embedding
assert embedding_layer is not None, (
"Do not support get embedding layer for current text encoder. " "Please check your configuration."
)
initialize_embedding = []
if initialize_tokens is not None:
for ii in range(len(placeholder_tokens)):
init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
temp_embedding = embedding_layer.weight[init_id]
initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1))
else:
for ii in range(len(placeholder_tokens)):
init_id = tokenizer("a").input_ids[1]
temp_embedding = embedding_layer.weight[init_id]
len_emb = temp_embedding.shape[0]
init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
initialize_embedding.append(init_weight)
# initialize_embedding = torch.cat(initialize_embedding,dim=0)
token_info_all = []
for ii in range(len(placeholder_tokens)):
token_info = tokenizer.get_token_info(placeholder_tokens[ii])
token_info["embedding"] = initialize_embedding[ii]
token_info["trainable"] = True
token_info_all.append(token_info)
embedding_layer.add_embeddings(token_info_all)