|
import torch.nn.functional as F
|
|
import comfy
|
|
|
|
from .model_patch import add_model_patch_option, patch_model_function_wrapper
|
|
|
|
|
|
|
|
class RAUNet:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"model": ("MODEL",),
|
|
"du_start": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
|
"du_end": ("INT", {"default": 4, "min": 0, "max": 10000}),
|
|
"xa_start": ("INT", {"default": 4, "min": 0, "max": 10000}),
|
|
"xa_end": ("INT", {"default": 10, "min": 0, "max": 10000}),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("MODEL",)
|
|
RETURN_NAMES = ("model",)
|
|
|
|
FUNCTION = "model_update"
|
|
|
|
def model_update(self, model, du_start, du_end, xa_start, xa_end):
|
|
|
|
model = model.clone()
|
|
|
|
add_raunet_patch(model,
|
|
du_start,
|
|
du_end,
|
|
xa_start,
|
|
xa_end)
|
|
|
|
return (model,)
|
|
|
|
|
|
|
|
def add_raunet_patch(model, du_start, du_end, xa_start, xa_end):
|
|
|
|
def raunet_forward(model, x, timesteps, transformer_options, control):
|
|
if 'model_patch' not in transformer_options:
|
|
print("RAUNet: 'model_patch' not in transformer_options, skip")
|
|
return
|
|
|
|
mp = transformer_options['model_patch']
|
|
is_SDXL = mp['SDXL']
|
|
|
|
if is_SDXL and type(model.input_blocks[6][0]) != comfy.ldm.modules.diffusionmodules.openaimodel.Downsample:
|
|
print('RAUNet: model is SDXL, but input[6] != Downsample, skip')
|
|
return
|
|
|
|
if not is_SDXL and type(model.input_blocks[3][0]) != comfy.ldm.modules.diffusionmodules.openaimodel.Downsample:
|
|
print('RAUNet: model is not SDXL, but input[3] != Downsample, skip')
|
|
return
|
|
|
|
if 'raunet' not in mp:
|
|
print('RAUNet: "raunet" not in model_patch options, skip')
|
|
return
|
|
|
|
if is_SDXL:
|
|
block = model.input_blocks[6][0]
|
|
else:
|
|
block = model.input_blocks[3][0]
|
|
|
|
total_steps = mp['total_steps']
|
|
step = mp['step']
|
|
|
|
ro = mp['raunet']
|
|
du_start = ro['du_start']
|
|
du_end = ro['du_end']
|
|
|
|
if step >= du_start and step < du_end:
|
|
block.op.stride = (4, 4)
|
|
block.op.padding = (2, 2)
|
|
block.op.dilation = (2, 2)
|
|
else:
|
|
block.op.stride = (2, 2)
|
|
block.op.padding = (1, 1)
|
|
block.op.dilation = (1, 1)
|
|
|
|
patch_model_function_wrapper(model, raunet_forward)
|
|
model.set_model_input_block_patch(in_xattn_patch)
|
|
model.set_model_output_block_patch(out_xattn_patch)
|
|
|
|
to = add_model_patch_option(model)
|
|
mp = to['model_patch']
|
|
if 'raunet' not in mp:
|
|
mp['raunet'] = {}
|
|
ro = mp['raunet']
|
|
|
|
ro['du_start'] = du_start
|
|
ro['du_end'] = du_end
|
|
ro['xa_start'] = xa_start
|
|
ro['xa_end'] = xa_end
|
|
|
|
|
|
def in_xattn_patch(h, transformer_options):
|
|
|
|
if transformer_options["block"] != ("input", 4):
|
|
|
|
return h
|
|
if 'model_patch' not in transformer_options:
|
|
print("RAUNet (i-x-p): 'model_patch' not in transformer_options")
|
|
return h
|
|
mp = transformer_options['model_patch']
|
|
if 'raunet' not in mp:
|
|
print("RAUNet (i-x-p): 'raunet' not in model_patch options")
|
|
return h
|
|
|
|
step = mp['step']
|
|
ro = mp['raunet']
|
|
xa_start = ro['xa_start']
|
|
xa_end = ro['xa_end']
|
|
|
|
if step < xa_start or step >= xa_end:
|
|
return h
|
|
h = F.avg_pool2d(h, kernel_size=(2,2))
|
|
return h
|
|
|
|
|
|
def out_xattn_patch(h, hsp, transformer_options):
|
|
if 'model_patch' not in transformer_options:
|
|
print("RAUNet (o-x-p): 'model_patch' not in transformer_options")
|
|
return h, hsp
|
|
mp = transformer_options['model_patch']
|
|
if 'raunet' not in mp:
|
|
print("RAUNet (o-x-p): 'raunet' not in model_patch options")
|
|
return h
|
|
|
|
step = mp['step']
|
|
is_SDXL = mp['SDXL']
|
|
ro = mp['raunet']
|
|
xa_start = ro['xa_start']
|
|
xa_end = ro['xa_end']
|
|
|
|
if is_SDXL:
|
|
if transformer_options["block"] != ("output", 5):
|
|
|
|
return h, hsp
|
|
else:
|
|
if transformer_options["block"] != ("output", 8):
|
|
|
|
return h, hsp
|
|
|
|
if step < xa_start or step >= xa_end:
|
|
return h, hsp
|
|
|
|
|
|
re_size = (hsp.shape[-2], hsp.shape[-1])
|
|
h = F.interpolate(h, size=re_size, mode='bicubic')
|
|
|
|
return h, hsp
|
|
|
|
|
|
|