|
import comfy
|
|
import re
|
|
from impact.utils import *
|
|
|
|
hf_transformer_model_urls = [
|
|
"rizvandwiki/gender-classification-2",
|
|
"NTQAI/pedestrian_gender_recognition",
|
|
"Leilab/gender_class",
|
|
"ProjectPersonal/GenderClassifier",
|
|
"crangana/trained-gender",
|
|
"cledoux42/GenderNew_v002",
|
|
"ivensamdh/genderage2"
|
|
]
|
|
|
|
|
|
class HF_TransformersClassifierProvider:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
global hf_transformer_model_urls
|
|
return {"required": {
|
|
"preset_repo_id": (hf_transformer_model_urls + ['Manual repo id'],),
|
|
"manual_repo_id": ("STRING", {"multiline": False}),
|
|
"device_mode": (["AUTO", "Prefer GPU", "CPU"],),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("TRANSFORMERS_CLASSIFIER",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/HuggingFace"
|
|
|
|
def doit(self, preset_repo_id, manual_repo_id, device_mode):
|
|
from transformers import pipeline
|
|
|
|
if preset_repo_id == 'Manual repo id':
|
|
url = manual_repo_id
|
|
else:
|
|
url = preset_repo_id
|
|
|
|
if device_mode != 'CPU':
|
|
device = comfy.model_management.get_torch_device()
|
|
else:
|
|
device = "cpu"
|
|
|
|
classifier = pipeline('image-classification', model=url, device=device)
|
|
|
|
return (classifier,)
|
|
|
|
|
|
preset_classify_expr = [
|
|
'#Female > #Male',
|
|
'#Female < #Male',
|
|
'female > 0.5',
|
|
'male > 0.5',
|
|
'Age16to25 > 0.1',
|
|
'Age50to69 > 0.1',
|
|
]
|
|
|
|
symbolic_label_map = {
|
|
'#Female': {'female', 'Female', 'Human Female', 'woman', 'women', 'girl'},
|
|
'#Male': {'male', 'Male', 'Human Male', 'man', 'men', 'boy'}
|
|
}
|
|
|
|
def is_numeric_string(input_str):
|
|
return re.match(r'^-?\d+(\.\d+)?$', input_str) is not None
|
|
|
|
|
|
classify_expr_pattern = r'([^><= ]+)\s*(>|<|>=|<=|=)\s*([^><= ]+)'
|
|
|
|
|
|
class SEGS_Classify:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
global preset_classify_expr
|
|
return {"required": {
|
|
"classifier": ("TRANSFORMERS_CLASSIFIER",),
|
|
"segs": ("SEGS",),
|
|
"preset_expr": (preset_classify_expr + ['Manual expr'],),
|
|
"manual_expr": ("STRING", {"multiline": False}),
|
|
},
|
|
"optional": {
|
|
"ref_image_opt": ("IMAGE", ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("SEGS", "SEGS", "STRING")
|
|
RETURN_NAMES = ("filtered_SEGS", "remained_SEGS", "detected_labels")
|
|
OUTPUT_IS_LIST = (False, False, True)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "ImpactPack/HuggingFace"
|
|
|
|
@staticmethod
|
|
def lookup_classified_label_score(score_infos, label):
|
|
global symbolic_label_map
|
|
|
|
if label.startswith('#'):
|
|
if label not in symbolic_label_map:
|
|
return None
|
|
else:
|
|
label = symbolic_label_map[label]
|
|
else:
|
|
label = {label}
|
|
|
|
for x in score_infos:
|
|
if x['label'] in label:
|
|
return x['score']
|
|
|
|
return None
|
|
|
|
def doit(self, classifier, segs, preset_expr, manual_expr, ref_image_opt=None):
|
|
if preset_expr == 'Manual expr':
|
|
expr_str = manual_expr
|
|
else:
|
|
expr_str = preset_expr
|
|
|
|
match = re.match(classify_expr_pattern, expr_str)
|
|
|
|
if match is None:
|
|
return (segs[0], []), segs, []
|
|
|
|
a = match.group(1)
|
|
op = match.group(2)
|
|
b = match.group(3)
|
|
|
|
a_is_lab = not is_numeric_string(a)
|
|
b_is_lab = not is_numeric_string(b)
|
|
|
|
classified = []
|
|
remained_SEGS = []
|
|
provided_labels = set()
|
|
|
|
for seg in segs[1]:
|
|
cropped_image = None
|
|
|
|
if seg.cropped_image is not None:
|
|
cropped_image = seg.cropped_image
|
|
elif ref_image_opt is not None:
|
|
|
|
cropped_image = crop_image(ref_image_opt, seg.crop_region)
|
|
|
|
if cropped_image is not None:
|
|
cropped_image = to_pil(cropped_image)
|
|
res = classifier(cropped_image)
|
|
classified.append((seg, res))
|
|
|
|
for x in res:
|
|
provided_labels.add(x['label'])
|
|
else:
|
|
remained_SEGS.append(seg)
|
|
|
|
filtered_SEGS = []
|
|
for seg, res in classified:
|
|
if a_is_lab:
|
|
avalue = SEGS_Classify.lookup_classified_label_score(res, a)
|
|
else:
|
|
avalue = a
|
|
|
|
if b_is_lab:
|
|
bvalue = SEGS_Classify.lookup_classified_label_score(res, b)
|
|
else:
|
|
bvalue = b
|
|
|
|
if avalue is None or bvalue is None:
|
|
remained_SEGS.append(seg)
|
|
continue
|
|
|
|
avalue = float(avalue)
|
|
bvalue = float(bvalue)
|
|
|
|
if op == '>':
|
|
cond = avalue > bvalue
|
|
elif op == '<':
|
|
cond = avalue < bvalue
|
|
elif op == '>=':
|
|
cond = avalue >= bvalue
|
|
elif op == '<=':
|
|
cond = avalue <= bvalue
|
|
else:
|
|
cond = avalue == bvalue
|
|
|
|
if cond:
|
|
filtered_SEGS.append(seg)
|
|
else:
|
|
remained_SEGS.append(seg)
|
|
|
|
return (segs[0], filtered_SEGS), (segs[0], remained_SEGS), list(provided_labels)
|
|
|