|
import copy
|
|
import torch
|
|
import nodes
|
|
from impact import utils
|
|
from . import segs_nodes
|
|
from thirdparty import noise_nodes
|
|
from server import PromptServer
|
|
import asyncio
|
|
import folder_paths
|
|
import os
|
|
from comfy_extras import nodes_custom_sampler
|
|
import math
|
|
|
|
|
|
class PixelKSampleHook:
|
|
cur_step = 0
|
|
total_step = 0
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def set_steps(self, info):
|
|
self.cur_step, self.total_step = info
|
|
|
|
def post_decode(self, pixels):
|
|
return pixels
|
|
|
|
def post_upscale(self, pixels):
|
|
return pixels
|
|
|
|
def post_encode(self, samples):
|
|
return samples
|
|
|
|
def pre_decode(self, samples):
|
|
return samples
|
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent,
|
|
denoise):
|
|
return model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise
|
|
|
|
def post_crop_region(self, w, h, item_bbox, crop_region):
|
|
return crop_region
|
|
|
|
def touch_scaled_size(self, w, h):
|
|
return w, h
|
|
|
|
|
|
class PixelKSampleHookCombine(PixelKSampleHook):
|
|
hook1 = None
|
|
hook2 = None
|
|
|
|
def __init__(self, hook1, hook2):
|
|
super().__init__()
|
|
self.hook1 = hook1
|
|
self.hook2 = hook2
|
|
|
|
def set_steps(self, info):
|
|
self.hook1.set_steps(info)
|
|
self.hook2.set_steps(info)
|
|
|
|
def pre_decode(self, samples):
|
|
return self.hook2.pre_decode(self.hook1.pre_decode(samples))
|
|
|
|
def post_decode(self, pixels):
|
|
return self.hook2.post_decode(self.hook1.post_decode(pixels))
|
|
|
|
def post_upscale(self, pixels):
|
|
return self.hook2.post_upscale(self.hook1.post_upscale(pixels))
|
|
|
|
def post_encode(self, samples):
|
|
return self.hook2.post_encode(self.hook1.post_encode(samples))
|
|
|
|
def post_crop_region(self, w, h, item_bbox, crop_region):
|
|
crop_region = self.hook1.post_crop_region(w, h, item_bbox, crop_region)
|
|
return self.hook2.post_crop_region(w, h, item_bbox, crop_region)
|
|
|
|
def touch_scaled_size(self, w, h):
|
|
w, h = self.hook1.touch_scaled_size(w, h)
|
|
return self.hook2.touch_scaled_size(w, h)
|
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent,
|
|
denoise):
|
|
model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise = \
|
|
self.hook1.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
|
|
upscaled_latent, denoise)
|
|
|
|
return self.hook2.pre_ksample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
|
|
upscaled_latent, denoise)
|
|
|
|
|
|
class DetailerHookCombine(PixelKSampleHookCombine):
|
|
def cycle_latent(self, latent):
|
|
latent = self.hook1.cycle_latent(latent)
|
|
latent = self.hook2.cycle_latent(latent)
|
|
return latent
|
|
|
|
def post_detection(self, segs):
|
|
segs = self.hook1.post_detection(segs)
|
|
segs = self.hook2.post_detection(segs)
|
|
return segs
|
|
|
|
def post_paste(self, image):
|
|
image = self.hook1.post_paste(image)
|
|
image = self.hook2.post_paste(image)
|
|
return image
|
|
|
|
def get_custom_noise(self, seed, noise, is_touched):
|
|
noise_1st, is_touched = self.hook1.get_custom_noise(seed, noise, is_touched)
|
|
noise_2nd, is_touched = self.hook2.get_custom_noise(seed, noise, is_touched)
|
|
return noise, is_touched
|
|
|
|
|
|
class SimpleCfgScheduleHook(PixelKSampleHook):
|
|
target_cfg = 0
|
|
|
|
def __init__(self, target_cfg):
|
|
super().__init__()
|
|
self.target_cfg = target_cfg
|
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise):
|
|
if self.total_step > 1:
|
|
progress = self.cur_step / (self.total_step - 1)
|
|
gap = self.target_cfg - cfg
|
|
current_cfg = int(cfg + gap * progress)
|
|
else:
|
|
current_cfg = self.target_cfg
|
|
|
|
return model, seed, steps, current_cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise
|
|
|
|
|
|
class SimpleDenoiseScheduleHook(PixelKSampleHook):
|
|
def __init__(self, target_denoise):
|
|
super().__init__()
|
|
self.target_denoise = target_denoise
|
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise):
|
|
if self.total_step > 1:
|
|
progress = self.cur_step / (self.total_step - 1)
|
|
gap = self.target_denoise - denoise
|
|
current_denoise = denoise + gap * progress
|
|
else:
|
|
current_denoise = self.target_denoise
|
|
|
|
return model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, current_denoise
|
|
|
|
|
|
class SimpleStepsScheduleHook(PixelKSampleHook):
|
|
def __init__(self, target_steps):
|
|
super().__init__()
|
|
self.target_steps = target_steps
|
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise):
|
|
if self.total_step > 1:
|
|
progress = self.cur_step / (self.total_step - 1)
|
|
gap = self.target_steps - steps
|
|
current_steps = int(steps + gap * progress)
|
|
else:
|
|
current_steps = self.target_steps
|
|
|
|
return model, seed, current_steps, cfg, sampler_name, scheduler, positive, negative, upscaled_latent, denoise
|
|
|
|
|
|
class DetailerHook(PixelKSampleHook):
|
|
def cycle_latent(self, latent):
|
|
return latent
|
|
|
|
def post_detection(self, segs):
|
|
return segs
|
|
|
|
def post_paste(self, image):
|
|
return image
|
|
|
|
def get_custom_noise(self, seed, noise, is_touched):
|
|
return noise, is_touched
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VariationNoiseDetailerHookProvider(DetailerHook):
|
|
def __init__(self, variation_seed, variation_strength):
|
|
super().__init__()
|
|
self.variation_seed = variation_seed
|
|
self.variation_strength = variation_strength
|
|
|
|
def get_custom_noise(self, seed, noise, is_touched):
|
|
empty_noise = {'samples': torch.zeros(noise.size())}
|
|
if not is_touched:
|
|
noise = nodes_custom_sampler.Noise_RandomNoise(seed).generate_noise(empty_noise)
|
|
noise_2nd = nodes_custom_sampler.Noise_RandomNoise(self.variation_seed).generate_noise(empty_noise)
|
|
|
|
mixed_noise = ((1 - self.variation_strength) * noise + self.variation_strength * noise_2nd)
|
|
|
|
|
|
scale_factor = math.sqrt((1 - self.variation_strength) ** 2 + self.variation_strength ** 2)
|
|
corrected_noise = mixed_noise / scale_factor
|
|
|
|
return corrected_noise, True
|
|
|
|
|
|
class SimpleDetailerDenoiseSchedulerHook(DetailerHook):
|
|
def __init__(self, target_denoise):
|
|
super().__init__()
|
|
self.target_denoise = target_denoise
|
|
|
|
def pre_ksample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise):
|
|
if self.total_step > 1:
|
|
progress = self.cur_step / (self.total_step - 1)
|
|
gap = self.target_denoise - denoise
|
|
current_denoise = denoise + gap * progress
|
|
else:
|
|
|
|
current_denoise = denoise
|
|
|
|
return model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, current_denoise
|
|
|
|
|
|
class CoreMLHook(DetailerHook):
|
|
def __init__(self, mode):
|
|
super().__init__()
|
|
resolution = mode.split('x')
|
|
|
|
self.w = int(resolution[0])
|
|
self.h = int(resolution[1])
|
|
|
|
self.override_bbox_by_segm = False
|
|
|
|
def pre_decode(self, samples):
|
|
new_samples = copy.deepcopy(samples)
|
|
new_samples['samples'] = samples['samples'][0].unsqueeze(0)
|
|
return new_samples
|
|
|
|
def post_encode(self, samples):
|
|
new_samples = copy.deepcopy(samples)
|
|
new_samples['samples'] = samples['samples'].repeat(2, 1, 1, 1)
|
|
return new_samples
|
|
|
|
def post_crop_region(self, w, h, item_bbox, crop_region):
|
|
x1, y1, x2, y2 = crop_region
|
|
bx1, by1, bx2, by2 = item_bbox
|
|
crop_w = x2-x1
|
|
crop_h = y2-y1
|
|
|
|
crop_ratio = crop_w/crop_h
|
|
target_ratio = self.w/self.h
|
|
if crop_ratio < target_ratio:
|
|
|
|
top_gap = by1 - y1
|
|
bottom_gap = y2 - by2
|
|
|
|
gap_ratio = top_gap / bottom_gap
|
|
|
|
target_height = 1/target_ratio*crop_w
|
|
delta_height = crop_h - target_height
|
|
|
|
new_y1 = int(y1 + delta_height*gap_ratio)
|
|
new_y2 = int(new_y1 + target_height)
|
|
crop_region = x1, new_y1, x2, new_y2
|
|
|
|
elif crop_ratio > target_ratio:
|
|
|
|
left_gap = bx1 - x1
|
|
right_gap = x2 - bx2
|
|
|
|
gap_ratio = left_gap / right_gap
|
|
|
|
target_width = target_ratio*crop_h
|
|
delta_width = crop_w - target_width
|
|
|
|
new_x1 = int(x1 + delta_width*gap_ratio)
|
|
new_x2 = int(new_x1 + target_width)
|
|
crop_region = new_x1, y1, new_x2, y2
|
|
|
|
return crop_region
|
|
|
|
def touch_scaled_size(self, w, h):
|
|
return self.w, self.h
|
|
|
|
|
|
|
|
class InjectNoiseHook(PixelKSampleHook):
|
|
def __init__(self, source, seed, start_strength, end_strength):
|
|
super().__init__()
|
|
self.source = source
|
|
self.seed = seed
|
|
self.start_strength = start_strength
|
|
self.end_strength = end_strength
|
|
|
|
def post_encode(self, samples):
|
|
cur_step = self.cur_step
|
|
|
|
size = samples['samples'].shape
|
|
seed = cur_step + self.seed + cur_step
|
|
|
|
if "BNK_NoisyLatentImage" in nodes.NODE_CLASS_MAPPINGS and "BNK_InjectNoise" in nodes.NODE_CLASS_MAPPINGS:
|
|
NoisyLatentImage = nodes.NODE_CLASS_MAPPINGS["BNK_NoisyLatentImage"]
|
|
InjectNoise = nodes.NODE_CLASS_MAPPINGS["BNK_InjectNoise"]
|
|
else:
|
|
utils.try_install_custom_node('https://github.com/BlenderNeko/ComfyUI_Noise',
|
|
"To use 'NoiseInjectionHookProvider', 'ComfyUI Noise' extension is required.")
|
|
raise Exception("'BNK_NoisyLatentImage', 'BNK_InjectNoise' nodes are not installed.")
|
|
|
|
noise = NoisyLatentImage().create_noisy_latents(self.source, seed, size[3] * 8, size[2] * 8, size[0])[0]
|
|
|
|
|
|
mask = None
|
|
if 'noise_mask' in samples:
|
|
mask = samples['noise_mask']
|
|
|
|
strength = self.start_strength + (self.end_strength - self.start_strength) * cur_step / self.total_step
|
|
samples = InjectNoise().inject_noise(samples, strength, noise, mask)[0]
|
|
print(f"[Impact Pack] InjectNoiseHook: strength = {strength}")
|
|
|
|
if mask is not None:
|
|
samples['noise_mask'] = mask
|
|
|
|
return samples
|
|
|
|
|
|
class UnsamplerHook(PixelKSampleHook):
|
|
def __init__(self, model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name,
|
|
scheduler, normalize, positive, negative):
|
|
super().__init__()
|
|
self.model = model
|
|
self.cfg = cfg
|
|
self.sampler_name = sampler_name
|
|
self.steps = steps
|
|
self.start_end_at_step = start_end_at_step
|
|
self.end_end_at_step = end_end_at_step
|
|
self.scheduler = scheduler
|
|
self.normalize = normalize
|
|
self.positive = positive
|
|
self.negative = negative
|
|
|
|
def post_encode(self, samples):
|
|
cur_step = self.cur_step
|
|
|
|
Unsampler = noise_nodes.Unsampler
|
|
|
|
end_at_step = self.start_end_at_step + (self.end_end_at_step - self.start_end_at_step) * cur_step / self.total_step
|
|
end_at_step = int(end_at_step)
|
|
|
|
print(f"[Impact Pack] UnsamplerHook: end_at_step = {end_at_step}")
|
|
|
|
|
|
mask = None
|
|
if 'noise_mask' in samples:
|
|
mask = samples['noise_mask']
|
|
|
|
samples = Unsampler().unsampler(self.model, self.cfg, self.sampler_name, self.steps, end_at_step,
|
|
self.scheduler, self.normalize, self.positive, self.negative, samples)[0]
|
|
|
|
if mask is not None:
|
|
samples['noise_mask'] = mask
|
|
|
|
return samples
|
|
|
|
|
|
class InjectNoiseHookForDetailer(DetailerHook):
|
|
def __init__(self, source, seed, start_strength, end_strength, from_start=False):
|
|
super().__init__()
|
|
self.source = source
|
|
self.seed = seed
|
|
self.start_strength = start_strength
|
|
self.end_strength = end_strength
|
|
self.from_start = from_start
|
|
|
|
def inject_noise(self, samples):
|
|
cur_step = self.cur_step if self.from_start else self.cur_step - 1
|
|
total_step = self.total_step if self.from_start else self.total_step - 1
|
|
|
|
size = samples['samples'].shape
|
|
seed = cur_step + self.seed + cur_step
|
|
|
|
if "BNK_NoisyLatentImage" in nodes.NODE_CLASS_MAPPINGS and "BNK_InjectNoise" in nodes.NODE_CLASS_MAPPINGS:
|
|
NoisyLatentImage = nodes.NODE_CLASS_MAPPINGS["BNK_NoisyLatentImage"]
|
|
InjectNoise = nodes.NODE_CLASS_MAPPINGS["BNK_InjectNoise"]
|
|
else:
|
|
utils.try_install_custom_node('https://github.com/BlenderNeko/ComfyUI_Noise',
|
|
"To use 'NoiseInjectionDetailerHookProvider', 'ComfyUI Noise' extension is required.")
|
|
raise Exception("'BNK_NoisyLatentImage', 'BNK_InjectNoise' nodes are not installed.")
|
|
|
|
noise = NoisyLatentImage().create_noisy_latents(self.source, seed, size[3] * 8, size[2] * 8, size[0])[0]
|
|
|
|
|
|
mask = None
|
|
if 'noise_mask' in samples:
|
|
mask = samples['noise_mask']
|
|
|
|
strength = self.start_strength + (self.end_strength - self.start_strength) * cur_step / total_step
|
|
samples = InjectNoise().inject_noise(samples, strength, noise, mask)[0]
|
|
|
|
if mask is not None:
|
|
samples['noise_mask'] = mask
|
|
|
|
return samples
|
|
|
|
def cycle_latent(self, latent):
|
|
if self.cur_step == 0 and not self.from_start:
|
|
return latent
|
|
else:
|
|
return self.inject_noise(latent)
|
|
|
|
|
|
class UnsamplerDetailerHook(DetailerHook):
|
|
def __init__(self, model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name,
|
|
scheduler, normalize, positive, negative, from_start=False):
|
|
super().__init__()
|
|
self.model = model
|
|
self.cfg = cfg
|
|
self.sampler_name = sampler_name
|
|
self.steps = steps
|
|
self.start_end_at_step = start_end_at_step
|
|
self.end_end_at_step = end_end_at_step
|
|
self.scheduler = scheduler
|
|
self.normalize = normalize
|
|
self.positive = positive
|
|
self.negative = negative
|
|
self.from_start = from_start
|
|
|
|
def unsample(self, samples):
|
|
cur_step = self.cur_step if self.from_start else self.cur_step - 1
|
|
total_step = self.total_step if self.from_start else self.total_step - 1
|
|
|
|
Unsampler = noise_nodes.Unsampler
|
|
|
|
end_at_step = self.start_end_at_step + (self.end_end_at_step - self.start_end_at_step) * cur_step / total_step
|
|
end_at_step = int(end_at_step)
|
|
|
|
|
|
mask = None
|
|
if 'noise_mask' in samples:
|
|
mask = samples['noise_mask']
|
|
|
|
samples = Unsampler().unsampler(self.model, self.cfg, self.sampler_name, self.steps, end_at_step,
|
|
self.scheduler, self.normalize, self.positive, self.negative, samples)[0]
|
|
|
|
if mask is not None:
|
|
samples['noise_mask'] = mask
|
|
|
|
return samples
|
|
|
|
def cycle_latent(self, latent):
|
|
if self.cur_step == 0 and not self.from_start:
|
|
return latent
|
|
else:
|
|
return self.unsample(latent)
|
|
|
|
|
|
class SEGSOrderedFilterDetailerHook(DetailerHook):
|
|
def __init__(self, target, order, take_start, take_count):
|
|
super().__init__()
|
|
self.target = target
|
|
self.order = order
|
|
self.take_start = take_start
|
|
self.take_count = take_count
|
|
|
|
def post_detection(self, segs):
|
|
return segs_nodes.SEGSOrderedFilter().doit(segs, self.target, self.order, self.take_start, self.take_count)[0]
|
|
|
|
|
|
class SEGSRangeFilterDetailerHook(DetailerHook):
|
|
def __init__(self, target, mode, min_value, max_value):
|
|
super().__init__()
|
|
self.target = target
|
|
self.mode = mode
|
|
self.min_value = min_value
|
|
self.max_value = max_value
|
|
|
|
def post_detection(self, segs):
|
|
return segs_nodes.SEGSRangeFilter().doit(segs, self.target, self.mode, self.min_value, self.max_value)[0]
|
|
|
|
|
|
class SEGSLabelFilterDetailerHook(DetailerHook):
|
|
def __init__(self, labels):
|
|
super().__init__()
|
|
self.labels = labels
|
|
|
|
def post_detection(self, segs):
|
|
return segs_nodes.SEGSLabelFilter().doit(segs, "", self.labels)[0]
|
|
|
|
|
|
class PreviewDetailerHook(DetailerHook):
|
|
def __init__(self, node_id, quality):
|
|
super().__init__()
|
|
self.node_id = node_id
|
|
self.quality = quality
|
|
|
|
async def send(self, image):
|
|
if len(image) > 0:
|
|
image = image[0].unsqueeze(0)
|
|
img = utils.tensor2pil(image)
|
|
|
|
temp_path = os.path.join(folder_paths.get_temp_directory(), 'pvhook')
|
|
|
|
if not os.path.exists(temp_path):
|
|
os.makedirs(temp_path)
|
|
|
|
fullpath = os.path.join(temp_path, f"{self.node_id}.webp")
|
|
img.save(fullpath, quality=self.quality)
|
|
|
|
item = {
|
|
"filename": f"{self.node_id}.webp",
|
|
"subfolder": 'pvhook',
|
|
"type": 'temp'
|
|
}
|
|
|
|
PromptServer.instance.send_sync("impact-preview", {'node_id': self.node_id, 'item': item})
|
|
|
|
def post_paste(self, image):
|
|
asyncio.run(self.send(image))
|
|
return image
|
|
|