|
import re
|
|
import random
|
|
import os
|
|
import nodes
|
|
import folder_paths
|
|
import yaml
|
|
import numpy as np
|
|
import threading
|
|
from impact import utils
|
|
from impact import config
|
|
|
|
|
|
wildcards_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "wildcards"))
|
|
|
|
RE_WildCardQuantifier = re.compile(r"(?P<quantifier>\d+)#__(?P<keyword>[\w.\-+/*\\]+)__", re.IGNORECASE)
|
|
wildcard_lock = threading.Lock()
|
|
wildcard_dict = {}
|
|
|
|
|
|
def get_wildcard_list():
|
|
with wildcard_lock:
|
|
return [f"__{x}__" for x in wildcard_dict.keys()]
|
|
|
|
|
|
def get_wildcard_dict():
|
|
global wildcard_dict
|
|
with wildcard_lock:
|
|
return wildcard_dict
|
|
|
|
|
|
def wildcard_normalize(x):
|
|
return x.replace("\\", "/").replace(' ', '-').lower()
|
|
|
|
|
|
def read_wildcard(k, v):
|
|
if isinstance(v, list):
|
|
k = wildcard_normalize(k)
|
|
wildcard_dict[k] = v
|
|
elif isinstance(v, dict):
|
|
for k2, v2 in v.items():
|
|
new_key = f"{k}/{k2}"
|
|
new_key = wildcard_normalize(new_key)
|
|
read_wildcard(new_key, v2)
|
|
elif isinstance(v, str):
|
|
k = wildcard_normalize(k)
|
|
wildcard_dict[k] = [v]
|
|
|
|
|
|
def read_wildcard_dict(wildcard_path):
|
|
global wildcard_dict
|
|
for root, directories, files in os.walk(wildcard_path, followlinks=True):
|
|
for file in files:
|
|
if file.endswith('.txt'):
|
|
file_path = os.path.join(root, file)
|
|
rel_path = os.path.relpath(file_path, wildcard_path)
|
|
key = wildcard_normalize(os.path.splitext(rel_path)[0])
|
|
|
|
try:
|
|
with open(file_path, 'r', encoding="ISO-8859-1") as f:
|
|
lines = f.read().splitlines()
|
|
wildcard_dict[key] = lines
|
|
except yaml.reader.ReaderError:
|
|
with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
|
|
lines = f.read().splitlines()
|
|
wildcard_dict[key] = lines
|
|
elif file.endswith('.yaml'):
|
|
file_path = os.path.join(root, file)
|
|
|
|
try:
|
|
with open(file_path, 'r', encoding="ISO-8859-1") as f:
|
|
yaml_data = yaml.load(f, Loader=yaml.FullLoader)
|
|
except yaml.reader.ReaderError as e:
|
|
with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
|
|
yaml_data = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
|
for k, v in yaml_data.items():
|
|
read_wildcard(k, v)
|
|
|
|
return wildcard_dict
|
|
|
|
|
|
def process_comment_out(text):
|
|
lines = text.split('\n')
|
|
|
|
lines0 = []
|
|
flag = False
|
|
for line in lines:
|
|
if line.lstrip().startswith('#'):
|
|
flag = True
|
|
continue
|
|
|
|
if len(lines0) == 0:
|
|
lines0.append(line)
|
|
elif flag:
|
|
lines0[-1] += ' ' + line
|
|
flag = False
|
|
else:
|
|
lines0.append(line)
|
|
|
|
return '\n'.join(lines0)
|
|
|
|
|
|
def process(text, seed=None):
|
|
text = process_comment_out(text)
|
|
|
|
if seed is not None:
|
|
random.seed(seed)
|
|
random_gen = np.random.default_rng(seed)
|
|
|
|
local_wildcard_dict = get_wildcard_dict()
|
|
|
|
def replace_options(string):
|
|
replacements_found = False
|
|
|
|
def replace_option(match):
|
|
nonlocal replacements_found
|
|
options = match.group(1).split('|')
|
|
|
|
multi_select_pattern = options[0].split('$$')
|
|
select_range = None
|
|
select_sep = ' '
|
|
range_pattern = r'(\d+)(-(\d+))?'
|
|
range_pattern2 = r'-(\d+)'
|
|
wildcard_pattern = r"__([\w.\-+/*\\]+)__"
|
|
|
|
if len(multi_select_pattern) > 1:
|
|
r = re.match(range_pattern, options[0])
|
|
|
|
if r is None:
|
|
r = re.match(range_pattern2, options[0])
|
|
a = '1'
|
|
b = r.group(1).strip()
|
|
else:
|
|
a = r.group(1).strip()
|
|
b = r.group(3)
|
|
if b is not None:
|
|
b = b.strip()
|
|
|
|
if r is not None:
|
|
if b is not None and is_numeric_string(a) and is_numeric_string(b):
|
|
|
|
select_range = int(a), int(b)
|
|
elif is_numeric_string(a):
|
|
|
|
x = int(a)
|
|
select_range = (x, x)
|
|
|
|
if select_range is not None and len(multi_select_pattern) == 2:
|
|
|
|
matches = re.findall(wildcard_pattern, multi_select_pattern[1])
|
|
if len(options) == 1 and matches:
|
|
|
|
options = local_wildcard_dict.get(matches[0])
|
|
else:
|
|
|
|
options[0] = multi_select_pattern[1]
|
|
elif select_range is not None and len(multi_select_pattern) == 3:
|
|
|
|
select_sep = multi_select_pattern[1]
|
|
options[0] = multi_select_pattern[2]
|
|
|
|
adjusted_probabilities = []
|
|
|
|
total_prob = 0
|
|
|
|
for option in options:
|
|
parts = option.split('::', 1)
|
|
if len(parts) == 2 and is_numeric_string(parts[0].strip()):
|
|
config_value = float(parts[0].strip())
|
|
else:
|
|
config_value = 1
|
|
|
|
adjusted_probabilities.append(config_value)
|
|
total_prob += config_value
|
|
|
|
normalized_probabilities = [prob / total_prob for prob in adjusted_probabilities]
|
|
|
|
if select_range is None:
|
|
select_count = 1
|
|
else:
|
|
select_count = random_gen.integers(low=select_range[0], high=select_range[1]+1, size=1)
|
|
|
|
if select_count > len(options):
|
|
random_gen.shuffle(options)
|
|
selected_items = options
|
|
else:
|
|
selected_items = random_gen.choice(options, p=normalized_probabilities, size=select_count, replace=False)
|
|
|
|
selected_items2 = [re.sub(r'^\s*[0-9.]+::', '', x, 1) for x in selected_items]
|
|
replacement = select_sep.join(selected_items2)
|
|
if '::' in replacement:
|
|
pass
|
|
|
|
replacements_found = True
|
|
return replacement
|
|
|
|
pattern = r'{([^{}]*?)}'
|
|
replaced_string = re.sub(pattern, replace_option, string)
|
|
|
|
return replaced_string, replacements_found
|
|
|
|
def replace_wildcard(string):
|
|
pattern = r"__([\w.\-+/*\\]+)__"
|
|
matches = re.findall(pattern, string)
|
|
|
|
replacements_found = False
|
|
|
|
for match in matches:
|
|
keyword = match.lower()
|
|
keyword = wildcard_normalize(keyword)
|
|
if keyword in local_wildcard_dict:
|
|
replacement = random_gen.choice(local_wildcard_dict[keyword])
|
|
replacements_found = True
|
|
string = string.replace(f"__{match}__", replacement, 1)
|
|
elif '*' in keyword:
|
|
subpattern = keyword.replace('*', '.*').replace('+', '\\+')
|
|
total_patterns = []
|
|
found = False
|
|
for k, v in local_wildcard_dict.items():
|
|
if re.match(subpattern, k) is not None or re.match(subpattern, k+'/') is not None:
|
|
total_patterns += v
|
|
found = True
|
|
|
|
if found:
|
|
replacement = random_gen.choice(total_patterns)
|
|
replacements_found = True
|
|
string = string.replace(f"__{match}__", replacement, 1)
|
|
elif '/' not in keyword:
|
|
string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1)
|
|
string, replacements_found = replace_wildcard(string_fallback)
|
|
|
|
return string, replacements_found
|
|
|
|
replace_depth = 100
|
|
stop_unwrap = False
|
|
while not stop_unwrap and replace_depth > 1:
|
|
replace_depth -= 1
|
|
|
|
option_quantifier = [e.groupdict() for e in RE_WildCardQuantifier.finditer(text)]
|
|
for match in option_quantifier:
|
|
keyword = match['keyword'].lower()
|
|
quantifier = int(match['quantifier']) if match['quantifier'] else 1
|
|
replacement = '__|__'.join([keyword,] * quantifier)
|
|
wilder_keyword = keyword.replace('*', '\\*')
|
|
RE_TEMP = re.compile(fr"(?P<quantifier>\d+)#__(?P<keyword>{wilder_keyword})__", re.IGNORECASE)
|
|
text = RE_TEMP.sub(f"__{replacement}__", text)
|
|
|
|
|
|
pass1, is_replaced1 = replace_options(text)
|
|
|
|
while is_replaced1:
|
|
pass1, is_replaced1 = replace_options(pass1)
|
|
|
|
|
|
text, is_replaced2 = replace_wildcard(pass1)
|
|
stop_unwrap = not is_replaced1 and not is_replaced2
|
|
|
|
return text
|
|
|
|
|
|
def is_numeric_string(input_str):
|
|
return re.match(r'^-?\d+(\.\d+)?$', input_str) is not None
|
|
|
|
|
|
def safe_float(x):
|
|
if is_numeric_string(x):
|
|
return float(x)
|
|
else:
|
|
return 1.0
|
|
|
|
|
|
def extract_lora_values(string):
|
|
pattern = r'<lora:([^>]+)>'
|
|
matches = re.findall(pattern, string)
|
|
|
|
def touch_lbw(text):
|
|
return re.sub(r'LBW=[A-Za-z][A-Za-z0-9_-]*:', r'LBW=', text)
|
|
|
|
items = [touch_lbw(match.strip(':')) for match in matches]
|
|
|
|
added = set()
|
|
result = []
|
|
for item in items:
|
|
item = item.split(':')
|
|
|
|
lora = None
|
|
a = None
|
|
b = None
|
|
lbw = None
|
|
lbw_a = None
|
|
lbw_b = None
|
|
|
|
if len(item) > 0:
|
|
lora = item[0]
|
|
|
|
for sub_item in item[1:]:
|
|
if is_numeric_string(sub_item):
|
|
if a is None:
|
|
a = float(sub_item)
|
|
elif b is None:
|
|
b = float(sub_item)
|
|
elif sub_item.startswith("LBW="):
|
|
for lbw_item in sub_item[4:].split(';'):
|
|
if lbw_item.startswith("A="):
|
|
lbw_a = safe_float(lbw_item[2:].strip())
|
|
elif lbw_item.startswith("B="):
|
|
lbw_b = safe_float(lbw_item[2:].strip())
|
|
elif lbw_item.strip() != '':
|
|
lbw = lbw_item
|
|
|
|
if a is None:
|
|
a = 1.0
|
|
if b is None:
|
|
b = a
|
|
|
|
if lora is not None and lora not in added:
|
|
result.append((lora, a, b, lbw, lbw_a, lbw_b))
|
|
added.add(lora)
|
|
|
|
return result
|
|
|
|
|
|
def remove_lora_tags(string):
|
|
pattern = r'<lora:[^>]+>'
|
|
result = re.sub(pattern, '', string)
|
|
|
|
return result
|
|
|
|
|
|
def resolve_lora_name(lora_name_cache, name):
|
|
if os.path.exists(name):
|
|
return name
|
|
else:
|
|
if len(lora_name_cache) == 0:
|
|
lora_name_cache.extend(folder_paths.get_filename_list("loras"))
|
|
|
|
for x in lora_name_cache:
|
|
if x.endswith(name):
|
|
return x
|
|
|
|
|
|
def process_with_loras(wildcard_opt, model, clip, clip_encoder=None, seed=None, processed=None):
|
|
"""
|
|
process wildcard text including loras
|
|
|
|
:param wildcard_opt: wildcard text
|
|
:param model: model
|
|
:param clip: clip
|
|
:param clip_encoder: you can pass custom encoder such as adv_cliptext_encode
|
|
:param seed: seed for populating
|
|
:param processed: output variable - [pass1, pass2, pass3] will be saved into passed list
|
|
:return: model, clip, conditioning
|
|
"""
|
|
|
|
lora_name_cache = []
|
|
|
|
pass1 = process(wildcard_opt, seed)
|
|
loras = extract_lora_values(pass1)
|
|
pass2 = remove_lora_tags(pass1)
|
|
|
|
for lora_name, model_weight, clip_weight, lbw, lbw_a, lbw_b in loras:
|
|
lora_name_ext = lora_name.split('.')
|
|
if ('.'+lora_name_ext[-1]) not in folder_paths.supported_pt_extensions:
|
|
lora_name = lora_name+".safetensors"
|
|
|
|
orig_lora_name = lora_name
|
|
lora_name = resolve_lora_name(lora_name_cache, lora_name)
|
|
|
|
if lora_name is not None:
|
|
path = folder_paths.get_full_path("loras", lora_name)
|
|
else:
|
|
path = None
|
|
|
|
if path is not None:
|
|
print(f"LOAD LORA: {lora_name}: {model_weight}, {clip_weight}, LBW={lbw}, A={lbw_a}, B={lbw_b}")
|
|
|
|
def default_lora():
|
|
return nodes.LoraLoader().load_lora(model, clip, lora_name, model_weight, clip_weight)
|
|
|
|
if lbw is not None:
|
|
if 'LoraLoaderBlockWeight //Inspire' not in nodes.NODE_CLASS_MAPPINGS:
|
|
utils.try_install_custom_node(
|
|
'https://github.com/ltdrdata/ComfyUI-Inspire-Pack',
|
|
"To use 'LBW=' syntax in wildcards, 'Inspire Pack' extension is required.")
|
|
|
|
print(f"'LBW(Lora Block Weight)' is given, but the 'Inspire Pack' is not installed. The LBW= attribute is being ignored.")
|
|
model, clip = default_lora()
|
|
else:
|
|
cls = nodes.NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire']
|
|
model, clip, _ = cls().doit(model, clip, lora_name, model_weight, clip_weight, False, 0, lbw_a, lbw_b, "", lbw)
|
|
else:
|
|
model, clip = default_lora()
|
|
else:
|
|
print(f"LORA NOT FOUND: {orig_lora_name}")
|
|
|
|
pass3 = [x.strip() for x in pass2.split("BREAK")]
|
|
pass3 = [x for x in pass3 if x != '']
|
|
|
|
if len(pass3) == 0:
|
|
pass3 = ['']
|
|
|
|
pass3_str = [f'[{x}]' for x in pass3]
|
|
print(f"CLIP: {str.join(' + ', pass3_str)}")
|
|
|
|
result = None
|
|
|
|
for prompt in pass3:
|
|
if clip_encoder is None:
|
|
cur = nodes.CLIPTextEncode().encode(clip, prompt)[0]
|
|
else:
|
|
cur = clip_encoder.encode(clip, prompt)[0]
|
|
|
|
if result is not None:
|
|
result = nodes.ConditioningConcat().concat(result, cur)[0]
|
|
else:
|
|
result = cur
|
|
|
|
if processed is not None:
|
|
processed.append(pass1)
|
|
processed.append(pass2)
|
|
processed.append(pass3)
|
|
|
|
return model, clip, result
|
|
|
|
|
|
def starts_with_regex(pattern, text):
|
|
regex = re.compile(pattern)
|
|
return bool(regex.match(text))
|
|
|
|
|
|
def split_to_dict(text):
|
|
pattern = r'\[([A-Za-z0-9_. ]+)\]([^\[]+)(?=\[|$)'
|
|
matches = re.findall(pattern, text)
|
|
|
|
result_dict = {key: value.strip() for key, value in matches}
|
|
|
|
return result_dict
|
|
|
|
|
|
class WildcardChooser:
|
|
def __init__(self, items, randomize_when_exhaust):
|
|
self.i = 0
|
|
self.items = items
|
|
self.randomize_when_exhaust = randomize_when_exhaust
|
|
|
|
def get(self, seg):
|
|
if self.i >= len(self.items):
|
|
self.i = 0
|
|
if self.randomize_when_exhaust:
|
|
random.shuffle(self.items)
|
|
|
|
item = self.items[self.i]
|
|
self.i += 1
|
|
|
|
return item
|
|
|
|
|
|
class WildcardChooserDict:
|
|
def __init__(self, items):
|
|
self.items = items
|
|
|
|
def get(self, seg):
|
|
text = ""
|
|
if 'ALL' in self.items:
|
|
text = self.items['ALL']
|
|
|
|
if seg.label in self.items:
|
|
text += self.items[seg.label]
|
|
|
|
return text
|
|
|
|
|
|
def split_string_with_sep(input_string):
|
|
sep_pattern = r'\[SEP(?:\:\w+)?\]'
|
|
|
|
substrings = re.split(sep_pattern, input_string)
|
|
|
|
result_list = [None]
|
|
matches = re.findall(sep_pattern, input_string)
|
|
for i, substring in enumerate(substrings):
|
|
result_list.append(substring)
|
|
if i < len(matches):
|
|
if matches[i] == '[SEP]':
|
|
result_list.append(None)
|
|
elif matches[i] == '[SEP:R]':
|
|
result_list.append(random.randint(0, 1125899906842624))
|
|
else:
|
|
try:
|
|
seed = int(matches[i][5:-1])
|
|
except:
|
|
seed = None
|
|
result_list.append(seed)
|
|
|
|
iterable = iter(result_list)
|
|
return list(zip(iterable, iterable))
|
|
|
|
|
|
def process_wildcard_for_segs(wildcard):
|
|
if wildcard.startswith('[LAB]'):
|
|
raw_items = split_to_dict(wildcard)
|
|
|
|
items = {}
|
|
for k, v in raw_items.items():
|
|
v = v.strip()
|
|
if v != '':
|
|
items[k] = v
|
|
|
|
return 'LAB', WildcardChooserDict(items)
|
|
|
|
elif starts_with_regex(r"\[(ASC|DSC|RND)\]", wildcard):
|
|
mode = wildcard[1:4]
|
|
items = split_string_with_sep(wildcard[5:])
|
|
|
|
if mode == 'RND':
|
|
random.shuffle(items)
|
|
return mode, WildcardChooser(items, True)
|
|
else:
|
|
return mode, WildcardChooser(items, False)
|
|
|
|
else:
|
|
return None, WildcardChooser([(None, wildcard)], False)
|
|
|
|
|
|
def wildcard_load():
|
|
global wildcard_dict
|
|
wildcard_dict = {}
|
|
|
|
with wildcard_lock:
|
|
read_wildcard_dict(wildcards_path)
|
|
|
|
try:
|
|
read_wildcard_dict(config.get_config()['custom_wildcards'])
|
|
except Exception as e:
|
|
print(f"[Impact Pack] Failed to load custom wildcards directory.")
|
|
|
|
print(f"[Impact Pack] Wildcards loading done.")
|
|
|