|
import os
|
|
import re
|
|
import json
|
|
import shutil
|
|
import yaml
|
|
|
|
from PIL import Image
|
|
import nodes
|
|
import torch
|
|
|
|
import folder_paths
|
|
import comfy
|
|
import traceback
|
|
import random
|
|
|
|
from server import PromptServer
|
|
from .libs import utils, common
|
|
from .backend_support import CheckpointLoaderSimpleShared
|
|
|
|
prompt_builder_preset = {}
|
|
|
|
|
|
resource_path = os.path.join(os.path.dirname(__file__), "..", "resources")
|
|
resource_path = os.path.abspath(resource_path)
|
|
|
|
prompts_path = os.path.join(os.path.dirname(__file__), "..", "prompts")
|
|
prompts_path = os.path.abspath(prompts_path)
|
|
|
|
|
|
try:
|
|
pb_yaml_path = os.path.join(resource_path, 'prompt-builder.yaml')
|
|
pb_yaml_path_example = os.path.join(resource_path, 'prompt-builder.yaml.example')
|
|
|
|
if not os.path.exists(pb_yaml_path):
|
|
shutil.copy(pb_yaml_path_example, pb_yaml_path)
|
|
|
|
with open(pb_yaml_path, 'r', encoding="utf-8") as f:
|
|
prompt_builder_preset = yaml.load(f, Loader=yaml.FullLoader)
|
|
except Exception as e:
|
|
print(f"[Inspire Pack] Failed to load 'prompt-builder.yaml'")
|
|
|
|
|
|
class LoadPromptsFromDir:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
global prompts_path
|
|
try:
|
|
prompt_dirs = [d for d in os.listdir(prompts_path) if os.path.isdir(os.path.join(prompts_path, d))]
|
|
except Exception:
|
|
prompt_dirs = []
|
|
|
|
return {"required": {"prompt_dir": (prompt_dirs,)}}
|
|
|
|
RETURN_TYPES = ("ZIPPED_PROMPT",)
|
|
OUTPUT_IS_LIST = (True,)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
@staticmethod
|
|
def doit(prompt_dir):
|
|
global prompts_path
|
|
prompt_dir = os.path.join(prompts_path, prompt_dir)
|
|
files = [f for f in os.listdir(prompt_dir) if f.endswith(".txt")]
|
|
files.sort()
|
|
|
|
prompts = []
|
|
for file_name in files:
|
|
print(f"file_name: {file_name}")
|
|
try:
|
|
with open(os.path.join(prompt_dir, file_name), "r", encoding="utf-8") as file:
|
|
prompt_data = file.read()
|
|
prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)
|
|
|
|
for prompt in prompt_list:
|
|
pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
|
|
matches = re.search(pattern, prompt, re.DOTALL)
|
|
|
|
if matches:
|
|
positive_text = matches.group(1).strip()
|
|
negative_text = matches.group(2).strip()
|
|
result_tuple = (positive_text, negative_text, file_name)
|
|
prompts.append(result_tuple)
|
|
else:
|
|
print(f"[WARN] LoadPromptsFromDir: invalid prompt format in '{file_name}'")
|
|
except Exception as e:
|
|
print(f"[ERROR] LoadPromptsFromDir: an error occurred while processing '{file_name}': {str(e)}")
|
|
|
|
return (prompts, )
|
|
|
|
|
|
class LoadPromptsFromFile:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
global prompts_path
|
|
try:
|
|
prompt_files = []
|
|
for root, dirs, files in os.walk(prompts_path):
|
|
for file in files:
|
|
if file.endswith(".txt"):
|
|
file_path = os.path.join(root, file)
|
|
rel_path = os.path.relpath(file_path, prompts_path)
|
|
prompt_files.append(rel_path)
|
|
except Exception:
|
|
prompt_files = []
|
|
|
|
return {"required": {"prompt_file": (prompt_files,)},
|
|
"optional": {"text_data_opt": ("STRING", {"defaultInput": True})}}
|
|
|
|
RETURN_TYPES = ("ZIPPED_PROMPT",)
|
|
OUTPUT_IS_LIST = (True,)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
@staticmethod
|
|
def doit(prompt_file, text_data_opt=None):
|
|
prompt_path = os.path.join(prompts_path, prompt_file)
|
|
|
|
prompts = []
|
|
try:
|
|
if not text_data_opt:
|
|
with open(prompt_path, "r", encoding="utf-8") as file:
|
|
prompt_data = file.read()
|
|
else:
|
|
prompt_data = text_data_opt
|
|
|
|
prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)
|
|
|
|
pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
|
|
|
|
for prompt in prompt_list:
|
|
matches = re.search(pattern, prompt, re.DOTALL)
|
|
|
|
if matches:
|
|
positive_text = matches.group(1).strip()
|
|
negative_text = matches.group(2).strip()
|
|
result_tuple = (positive_text, negative_text, prompt_file)
|
|
prompts.append(result_tuple)
|
|
else:
|
|
print(f"[WARN] LoadPromptsFromFile: invalid prompt format in '{prompt_file}'")
|
|
except Exception as e:
|
|
print(f"[ERROR] LoadPromptsFromFile: an error occurred while processing '{prompt_file}': {str(e)}")
|
|
|
|
return (prompts, )
|
|
|
|
|
|
class LoadSinglePromptFromFile:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
global prompts_path
|
|
try:
|
|
prompt_files = []
|
|
for root, dirs, files in os.walk(prompts_path):
|
|
for file in files:
|
|
if file.endswith(".txt"):
|
|
file_path = os.path.join(root, file)
|
|
rel_path = os.path.relpath(file_path, prompts_path)
|
|
prompt_files.append(rel_path)
|
|
except Exception:
|
|
prompt_files = []
|
|
|
|
return {"required": {
|
|
"prompt_file": (prompt_files,),
|
|
"index": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
},
|
|
"optional": {"text_data_opt": ("STRING", {"defaultInput": True})}
|
|
}
|
|
|
|
RETURN_TYPES = ("ZIPPED_PROMPT",)
|
|
OUTPUT_IS_LIST = (True,)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
@staticmethod
|
|
def doit(prompt_file, index, text_data_opt=None):
|
|
prompt_path = os.path.join(prompts_path, prompt_file)
|
|
|
|
prompts = []
|
|
try:
|
|
if not text_data_opt:
|
|
with open(prompt_path, "r", encoding="utf-8") as file:
|
|
prompt_data = file.read()
|
|
else:
|
|
prompt_data = text_data_opt
|
|
|
|
prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)
|
|
try:
|
|
prompt = prompt_list[index]
|
|
except Exception:
|
|
prompt = prompt_list[-1]
|
|
|
|
pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
|
|
matches = re.search(pattern, prompt, re.DOTALL)
|
|
|
|
if matches:
|
|
positive_text = matches.group(1).strip()
|
|
negative_text = matches.group(2).strip()
|
|
result_tuple = (positive_text, negative_text, prompt_file)
|
|
prompts.append(result_tuple)
|
|
else:
|
|
print(f"[WARN] LoadSinglePromptFromFile: invalid prompt format in '{prompt_file}'")
|
|
except Exception as e:
|
|
print(f"[ERROR] LoadSinglePromptFromFile: an error occurred while processing '{prompt_file}': {str(e)}")
|
|
|
|
return (prompts, )
|
|
|
|
|
|
class UnzipPrompt:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"zipped_prompt": ("ZIPPED_PROMPT",), }}
|
|
|
|
RETURN_TYPES = ("STRING", "STRING", "STRING")
|
|
RETURN_NAMES = ("positive", "negative", "name")
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
def doit(self, zipped_prompt):
|
|
return zipped_prompt
|
|
|
|
|
|
class ZipPrompt:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"positive": ("STRING", {"forceInput": True, "multiline": True}),
|
|
"negative": ("STRING", {"forceInput": True, "multiline": True}),
|
|
},
|
|
"optional": {
|
|
"name_opt": ("STRING", {"forceInput": True, "multiline": False})
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("ZIPPED_PROMPT",)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
def doit(self, positive, negative, name_opt=""):
|
|
return ((positive, negative, name_opt), )
|
|
|
|
|
|
prompt_blacklist = set(['filename_prefix'])
|
|
|
|
|
|
class PromptExtractor:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
|
return {"required": {
|
|
"image": (sorted(files), {"image_upload": True}),
|
|
"positive_id": ("STRING", {}),
|
|
"negative_id": ("STRING", {}),
|
|
"info": ("STRING", {"multiline": True})
|
|
},
|
|
"hidden": {"unique_id": "UNIQUE_ID"},
|
|
}
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
RETURN_TYPES = ("STRING", "STRING")
|
|
RETURN_NAMES = ("positive", "negative")
|
|
FUNCTION = "doit"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
def doit(self, image, positive_id, negative_id, info, unique_id):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
info = Image.open(image_path).info
|
|
|
|
positive = ""
|
|
negative = ""
|
|
text = ""
|
|
prompt_dicts = {}
|
|
node_inputs = {}
|
|
|
|
def get_node_inputs(x):
|
|
if x in node_inputs:
|
|
return node_inputs[x]
|
|
else:
|
|
node_inputs[x] = None
|
|
|
|
obj = nodes.NODE_CLASS_MAPPINGS.get(x, None)
|
|
if obj is not None:
|
|
input_types = obj.INPUT_TYPES()
|
|
node_inputs[x] = input_types
|
|
return input_types
|
|
else:
|
|
return None
|
|
|
|
if isinstance(info, dict) and 'workflow' in info:
|
|
prompt = json.loads(info['prompt'])
|
|
for k, v in prompt.items():
|
|
input_types = get_node_inputs(v['class_type'])
|
|
if input_types is not None:
|
|
inputs = input_types['required'].copy()
|
|
if 'optional' in input_types:
|
|
inputs.update(input_types['optional'])
|
|
|
|
for name, value in inputs.items():
|
|
if name in prompt_blacklist:
|
|
continue
|
|
|
|
if value[0] == 'STRING' and name in v['inputs']:
|
|
prompt_dicts[f"{k}.{name.strip()}"] = (v['class_type'], v['inputs'][name])
|
|
|
|
for k, v in prompt_dicts.items():
|
|
text += f"{k} [{v[0]}] ==> {v[1]}\n"
|
|
|
|
positive = prompt_dicts.get(positive_id.strip(), "")
|
|
negative = prompt_dicts.get(negative_id.strip(), "")
|
|
else:
|
|
text = "There is no prompt information within the image."
|
|
|
|
PromptServer.instance.send_sync("inspire-node-feedback", {"node_id": unique_id, "widget_name": "info", "type": "text", "data": text})
|
|
return (positive, negative)
|
|
|
|
|
|
class GlobalSeed:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"mode": ("BOOLEAN", {"default": True, "label_on": "control_before_generate", "label_off": "control_after_generate"}),
|
|
"action": (["fixed", "increment", "decrement", "randomize",
|
|
"increment for each node", "decrement for each node", "randomize for each node"], ),
|
|
"last_seed": ("STRING", {"default": ""}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
def doit(self, **kwargs):
|
|
return {}
|
|
|
|
|
|
class GlobalSampler:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
|
"scheduler": (common.SCHEDULERS, ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
def doit(self, **kwargs):
|
|
return {}
|
|
|
|
|
|
class BindImageListPromptList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE",),
|
|
"zipped_prompts": ("ZIPPED_PROMPT",),
|
|
"default_positive": ("STRING", {"multiline": True, "placeholder": "default positive"}),
|
|
"default_negative": ("STRING", {"multiline": True, "placeholder": "default negative"}),
|
|
}
|
|
}
|
|
|
|
INPUT_IS_LIST = True
|
|
|
|
RETURN_TYPES = ("IMAGE", "STRING", "STRING", "STRING")
|
|
RETURN_NAMES = ("image", "positive", "negative", "prompt_label")
|
|
|
|
OUTPUT_IS_LIST = (True, True, True,)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
def doit(self, images, zipped_prompts, default_positive, default_negative):
|
|
positives = []
|
|
negatives = []
|
|
prompt_labels = []
|
|
|
|
if len(images) < len(zipped_prompts):
|
|
zipped_prompts = zipped_prompts[:len(images)]
|
|
|
|
elif len(images) > len(zipped_prompts):
|
|
lack = len(images) - len(zipped_prompts)
|
|
default_prompt = (default_positive[0], default_negative[0], "default")
|
|
zipped_prompts = zipped_prompts[:]
|
|
for i in range(lack):
|
|
zipped_prompts.append(default_prompt)
|
|
|
|
for prompt in zipped_prompts:
|
|
a, b, c = prompt
|
|
positives.append(a)
|
|
negatives.append(b)
|
|
prompt_labels.append(c)
|
|
|
|
return (images, positives, negatives, prompt_labels)
|
|
|
|
|
|
class BNK_EncoderWrapper:
|
|
def __init__(self, token_normalization, weight_interpretation):
|
|
self.token_normalization = token_normalization
|
|
self.weight_interpretation = weight_interpretation
|
|
|
|
def encode(self, clip, text):
|
|
if 'BNK_CLIPTextEncodeAdvanced' not in nodes.NODE_CLASS_MAPPINGS:
|
|
utils.try_install_custom_node('https://github.com/BlenderNeko/ComfyUI_ADV_CLIP_emb',
|
|
"To use 'WildcardEncodeInspire' node, 'ComfyUI_ADV_CLIP_emb' extension is required.")
|
|
raise Exception(f"[ERROR] To use WildcardEncodeInspire, you need to install 'Advanced CLIP Text Encode'")
|
|
return nodes.NODE_CLASS_MAPPINGS['BNK_CLIPTextEncodeAdvanced']().encode(clip, text, self.token_normalization, self.weight_interpretation)
|
|
|
|
|
|
class WildcardEncodeInspire:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"clip": ("CLIP",),
|
|
"token_normalization": (["none", "mean", "length", "length+mean"], ),
|
|
"weight_interpretation": (["comfy", "A1111", "compel", "comfy++", "down_weight"], {'default': 'comfy++'}),
|
|
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Wildcard Prompt (User Input)'}),
|
|
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Prompt (Will be generated automatically)'}),
|
|
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
|
|
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"), ),
|
|
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "STRING")
|
|
RETURN_NAMES = ("model", "clip", "conditioning", "populated_text")
|
|
FUNCTION = "doit"
|
|
|
|
def doit(self, *args, **kwargs):
|
|
populated = kwargs['populated_text']
|
|
|
|
clip_encoder = BNK_EncoderWrapper(kwargs['token_normalization'], kwargs['weight_interpretation'])
|
|
|
|
if 'ImpactWildcardEncode' not in nodes.NODE_CLASS_MAPPINGS:
|
|
utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
|
|
"To use 'Wildcard Encode (Inspire)' node, 'Impact Pack' extension is required.")
|
|
raise Exception(f"[ERROR] To use 'Wildcard Encode (Inspire)', you need to install 'Impact Pack'")
|
|
|
|
processed = []
|
|
model, clip, conditioning = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=populated, model=kwargs['model'], clip=kwargs['clip'], seed=kwargs['seed'], clip_encoder=clip_encoder, processed=processed)
|
|
return (model, clip, conditioning, processed[0])
|
|
|
|
|
|
class MakeBasicPipe:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
|
"ckpt_key_opt": ("STRING", {"multiline": False, "placeholder": "If empty, use 'ckpt_name' as the key." }),
|
|
|
|
"positive_wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Positive Prompt (User Input)'}),
|
|
"negative_wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Negative Prompt (User Input)'}),
|
|
|
|
"Add selection to": ("BOOLEAN", {"default": True, "label_on": "Positive", "label_off": "Negative"}),
|
|
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
|
|
"Select to add Wildcard": (["Select the Wildcard to add to the text"],),
|
|
"wildcard_mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
|
|
|
|
"positive_populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Positive Prompt (Will be generated automatically)'}),
|
|
"negative_populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Negative Prompt (Will be generated automatically)'}),
|
|
|
|
"token_normalization": (["none", "mean", "length", "length+mean"],),
|
|
"weight_interpretation": (["comfy", "A1111", "compel", "comfy++", "down_weight"], {'default': 'comfy++'}),
|
|
|
|
"stop_at_clip_layer": ("INT", {"default": -2, "min": -24, "max": -1, "step": 1}),
|
|
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
},
|
|
"optional": {
|
|
"vae_opt": ("VAE",)
|
|
},
|
|
}
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
RETURN_TYPES = ("BASIC_PIPE", "STRING")
|
|
RETURN_NAMES = ("basic_pipe", "cache_key")
|
|
FUNCTION = "doit"
|
|
|
|
def doit(self, **kwargs):
|
|
pos_populated = kwargs['positive_populated_text']
|
|
neg_populated = kwargs['negative_populated_text']
|
|
|
|
clip_encoder = BNK_EncoderWrapper(kwargs['token_normalization'], kwargs['weight_interpretation'])
|
|
|
|
if 'ImpactWildcardEncode' not in nodes.NODE_CLASS_MAPPINGS:
|
|
utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
|
|
"To use 'Make Basic Pipe (Inspire)' node, 'Impact Pack' extension is required.")
|
|
raise Exception(f"[ERROR] To use 'Make Basic Pipe (Inspire)', you need to install 'Impact Pack'")
|
|
|
|
model, clip, vae, key = CheckpointLoaderSimpleShared().doit(ckpt_name=kwargs['ckpt_name'], key_opt=kwargs['ckpt_key_opt'])
|
|
clip = nodes.CLIPSetLastLayer().set_last_layer(clip, kwargs['stop_at_clip_layer'])[0]
|
|
model, clip, positive = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=pos_populated, model=model, clip=clip, clip_encoder=clip_encoder)
|
|
model, clip, negative = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=neg_populated, model=model, clip=clip, clip_encoder=clip_encoder)
|
|
|
|
if 'vae_opt' in kwargs:
|
|
vae = kwargs['vae_opt']
|
|
|
|
basic_pipe = model, clip, vae, positive, negative
|
|
|
|
return (basic_pipe, key)
|
|
|
|
|
|
class PromptBuilder:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
global prompt_builder_preset
|
|
|
|
presets = ["#PRESET"]
|
|
return {"required": {
|
|
"category": (list(prompt_builder_preset.keys()) + ["#PLACEHOLDER"], ),
|
|
"preset": (presets, ),
|
|
"text": ("STRING", {"multiline": True}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING", )
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
def doit(self, **kwargs):
|
|
return (kwargs['text'],)
|
|
|
|
|
|
class SeedExplorer:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"latent": ("LATENT",),
|
|
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
|
|
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
|
|
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"noise_mode": (["GPU(=A1111)", "CPU"],),
|
|
"initial_batch_seed_mode": (["incremental", "comfy"],),
|
|
},
|
|
"optional":
|
|
{
|
|
"variation_method": (["linear", "slerp"],),
|
|
"model": ("model",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("NOISE",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
@staticmethod
|
|
def apply_variation(start_noise, seed_items, noise_device, mask=None, variation_method='linear'):
|
|
noise = start_noise
|
|
for x in seed_items:
|
|
if isinstance(x, str):
|
|
item = x.split(':')
|
|
else:
|
|
item = x
|
|
|
|
if len(item) == 2:
|
|
try:
|
|
variation_seed = int(item[0])
|
|
variation_strength = float(item[1])
|
|
|
|
noise = utils.apply_variation_noise(noise, noise_device, variation_seed, variation_strength, mask=mask, variation_method=variation_method)
|
|
except Exception:
|
|
print(f"[ERROR] IGNORED: SeedExplorer failed to processing '{x}'")
|
|
traceback.print_exc()
|
|
return noise
|
|
|
|
@staticmethod
|
|
def doit(latent, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode,
|
|
initial_batch_seed_mode, variation_method='linear', model=None):
|
|
latent_image = latent["samples"]
|
|
|
|
if hasattr(comfy.sample, 'fix_empty_latent_channels') and model is not None:
|
|
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
|
|
|
|
device = comfy.model_management.get_torch_device()
|
|
noise_device = "cpu" if noise_mode == "CPU" else device
|
|
|
|
seed_prompt = seed_prompt.replace("\n", "")
|
|
items = seed_prompt.strip().split(",")
|
|
|
|
if items == ['']:
|
|
items = []
|
|
|
|
if enable_additional:
|
|
items.append((additional_seed, additional_strength))
|
|
|
|
try:
|
|
hd = items[0]
|
|
tl = items[1:]
|
|
|
|
if isinstance(hd, tuple):
|
|
hd_seed = int(hd[0])
|
|
else:
|
|
hd_seed = int(hd)
|
|
|
|
noise = utils.prepare_noise(latent_image, hd_seed, None, noise_device, initial_batch_seed_mode)
|
|
noise = noise.to(device)
|
|
noise = SeedExplorer.apply_variation(noise, tl, noise_device, variation_method=variation_method)
|
|
noise = noise.cpu()
|
|
|
|
return (noise,)
|
|
|
|
except Exception:
|
|
print(f"[ERROR] IGNORED: SeedExplorer failed")
|
|
traceback.print_exc()
|
|
|
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
|
|
device=noise_device)
|
|
return (noise,)
|
|
|
|
|
|
class CompositeNoise:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"destination": ("NOISE",),
|
|
"source": ("NOISE",),
|
|
"mode": (["center", "left-top", "right-top", "left-bottom", "right-bottom", "xy"], ),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("NOISE",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Prompt"
|
|
|
|
def doit(self, destination, source, mode, x, y):
|
|
new_tensor = destination.clone()
|
|
|
|
if mode == 'center':
|
|
y1 = (new_tensor.size(2) - source.size(2)) // 2
|
|
x1 = (new_tensor.size(3) - source.size(3)) // 2
|
|
elif mode == 'left-top':
|
|
y1 = 0
|
|
x1 = 0
|
|
elif mode == 'right-top':
|
|
y1 = 0
|
|
x1 = new_tensor.size(2) - source.size(2)
|
|
elif mode == 'left-bottom':
|
|
y1 = new_tensor.size(3) - source.size(3)
|
|
x1 = 0
|
|
elif mode == 'right-bottom':
|
|
y1 = new_tensor.size(3) - source.size(3)
|
|
x1 = new_tensor.size(2) - source.size(2)
|
|
else:
|
|
x1 = max(0, x)
|
|
y1 = max(0, y)
|
|
|
|
|
|
y2 = y1 + source.size(2)
|
|
x2 = x1 + source.size(3)
|
|
|
|
|
|
top = max(0, y1)
|
|
left = max(0, x1)
|
|
bottom = min(new_tensor.size(2), y2)
|
|
right = min(new_tensor.size(3), x2)
|
|
|
|
|
|
left_gap = left - x1
|
|
top_gap = top - y1
|
|
|
|
width = right - left
|
|
height = bottom - top
|
|
|
|
height = min(height, y1 + source.size(2) - top)
|
|
width = min(width, x1 + source.size(3) - left)
|
|
|
|
|
|
new_tensor[:, :, top:top + height, left:left + width] = source[:, :, top_gap:top_gap + height, left_gap:left_gap + width]
|
|
|
|
return (new_tensor,)
|
|
|
|
|
|
list_counter_map = {}
|
|
|
|
|
|
class ListCounter:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"signal": (utils.any_typ,),
|
|
"base_value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
},
|
|
"hidden": {"unique_id": "UNIQUE_ID"},
|
|
}
|
|
|
|
RETURN_TYPES = ("INT",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, signal, base_value, unique_id):
|
|
if unique_id not in list_counter_map:
|
|
count = 0
|
|
else:
|
|
count = list_counter_map[unique_id]
|
|
|
|
list_counter_map[unique_id] = count + 1
|
|
|
|
return (count + base_value, )
|
|
|
|
|
|
class CLIPTextEncodeWithWeight:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"text": ("STRING", {"multiline": True}), "clip": ("CLIP", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"add_weight": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def encode(self, clip, text, strength, add_weight):
|
|
tokens = clip.tokenize(text)
|
|
|
|
if add_weight != 0 or strength != 1:
|
|
for v in tokens.values():
|
|
for vv in v:
|
|
for i in range(0, len(vv)):
|
|
vv[i] = (vv[i][0], vv[i][1] * strength + add_weight)
|
|
|
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
|
return ([[cond, {"pooled_output": pooled}]], )
|
|
|
|
|
|
class RandomGeneratorForList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"signal": (utils.any_typ,),
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
},
|
|
"hidden": {"unique_id": "UNIQUE_ID"},
|
|
}
|
|
|
|
RETURN_TYPES = (utils.any_typ, "INT",)
|
|
RETURN_NAMES = ("signal", "random_value",)
|
|
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, signal, seed, unique_id):
|
|
if unique_id not in list_counter_map:
|
|
count = 0
|
|
else:
|
|
count = list_counter_map[unique_id]
|
|
|
|
list_counter_map[unique_id] = count + 1
|
|
|
|
rn = random.Random()
|
|
rn.seed(seed + count)
|
|
new_seed = random.randint(0, 1125899906842624)
|
|
|
|
return (signal, new_seed)
|
|
|
|
|
|
class RemoveControlNet:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", )}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, conditioning):
|
|
c = []
|
|
for t in conditioning:
|
|
n = [t[0], t[1].copy()]
|
|
|
|
if 'control' in n[1]:
|
|
del n[1]['control']
|
|
if 'control_apply_to_uncond' in n[1]:
|
|
del n[1]['control_apply_to_uncond']
|
|
c.append(n)
|
|
|
|
return (c, )
|
|
|
|
|
|
class RemoveControlNetFromRegionalPrompts:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"regional_prompts": ("REGIONAL_PROMPTS", )}}
|
|
RETURN_TYPES = ("REGIONAL_PROMPTS",)
|
|
FUNCTION = "doit"
|
|
|
|
CATEGORY = "InspirePack/Util"
|
|
|
|
def doit(self, regional_prompts):
|
|
rcn = RemoveControlNet()
|
|
res = []
|
|
for rp in regional_prompts:
|
|
_, _, _, _, positive, negative = rp.sampler.params
|
|
positive, negative = rcn.doit(positive)[0], rcn.doit(negative)[0]
|
|
sampler = rp.sampler.clone_with_conditionings(positive, negative)
|
|
res.append(rp.clone_with_sampler(sampler))
|
|
return (res, )
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"LoadPromptsFromDir //Inspire": LoadPromptsFromDir,
|
|
"LoadPromptsFromFile //Inspire": LoadPromptsFromFile,
|
|
"LoadSinglePromptFromFile //Inspire": LoadSinglePromptFromFile,
|
|
"UnzipPrompt //Inspire": UnzipPrompt,
|
|
"ZipPrompt //Inspire": ZipPrompt,
|
|
"PromptExtractor //Inspire": PromptExtractor,
|
|
"GlobalSeed //Inspire": GlobalSeed,
|
|
"GlobalSampler //Inspire": GlobalSampler,
|
|
"BindImageListPromptList //Inspire": BindImageListPromptList,
|
|
"WildcardEncode //Inspire": WildcardEncodeInspire,
|
|
"PromptBuilder //Inspire": PromptBuilder,
|
|
"SeedExplorer //Inspire": SeedExplorer,
|
|
"ListCounter //Inspire": ListCounter,
|
|
"CLIPTextEncodeWithWeight //Inspire": CLIPTextEncodeWithWeight,
|
|
"RandomGeneratorForList //Inspire": RandomGeneratorForList,
|
|
"MakeBasicPipe //Inspire": MakeBasicPipe,
|
|
"RemoveControlNet //Inspire": RemoveControlNet,
|
|
"RemoveControlNetFromRegionalPrompts //Inspire": RemoveControlNetFromRegionalPrompts,
|
|
"CompositeNoise //Inspire": CompositeNoise
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"LoadPromptsFromDir //Inspire": "Load Prompts From Dir (Inspire)",
|
|
"LoadPromptsFromFile //Inspire": "Load Prompts From File (Inspire)",
|
|
"LoadSinglePromptFromFile //Inspire": "Load Single Prompt From File (Inspire)",
|
|
"UnzipPrompt //Inspire": "Unzip Prompt (Inspire)",
|
|
"ZipPrompt //Inspire": "Zip Prompt (Inspire)",
|
|
"PromptExtractor //Inspire": "Prompt Extractor (Inspire)",
|
|
"GlobalSeed //Inspire": "Global Seed (Inspire)",
|
|
"GlobalSampler //Inspire": "Global Sampler (Inspire)",
|
|
"BindImageListPromptList //Inspire": "Bind [ImageList, PromptList] (Inspire)",
|
|
"WildcardEncode //Inspire": "Wildcard Encode (Inspire)",
|
|
"PromptBuilder //Inspire": "Prompt Builder (Inspire)",
|
|
"SeedExplorer //Inspire": "Seed Explorer (Inspire)",
|
|
"ListCounter //Inspire": "List Counter (Inspire)",
|
|
"CLIPTextEncodeWithWeight //Inspire": "CLIPTextEncodeWithWeight (Inspire)",
|
|
"RandomGeneratorForList //Inspire": "Random Generator for List (Inspire)",
|
|
"MakeBasicPipe //Inspire": "Make Basic Pipe (Inspire)",
|
|
"RemoveControlNet //Inspire": "Remove ControlNet (Inspire)",
|
|
"RemoveControlNetFromRegionalPrompts //Inspire": "Remove ControlNet [RegionalPrompts] (Inspire)",
|
|
"CompositeNoise //Inspire": "Composite Noise (Inspire)"
|
|
}
|
|
|