Upload 3 files
Browse files- app.py +65 -0
- requirements.txt +7 -0
- sam_hq_vit_h.pth +3 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from loguru import logger
|
8 |
+
from decouple import config
|
9 |
+
import io
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import cv2
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
from segment_anything import sam_model_registry, SamPredictor
|
17 |
+
|
18 |
+
import spaces
|
19 |
+
|
20 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
21 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
22 |
+
print(torch.version.cuda)
|
23 |
+
device = torch.cuda.get_device_name(torch.cuda.current_device())
|
24 |
+
print(device)
|
25 |
+
|
26 |
+
sam_checkpoint = "sam-hq/models/sam_hq_vit_h.pth"
|
27 |
+
model_type = "vit_h"
|
28 |
+
device = "cuda"
|
29 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
30 |
+
sam.to(device=device)
|
31 |
+
predictor = SamPredictor(sam)
|
32 |
+
|
33 |
+
@spaces.GPU(duration=5)
|
34 |
+
def generate_image(prompt, image):
|
35 |
+
predictor.set_image(image)
|
36 |
+
|
37 |
+
prompt = json.loads(prompt)
|
38 |
+
input_points = np.array(prompt['input_points'])
|
39 |
+
input_labels = np.array(prompt['input_labels'])
|
40 |
+
|
41 |
+
mask, _, _ = predictor.predict(
|
42 |
+
point_coords=input_points,
|
43 |
+
point_labels=input_labels,
|
44 |
+
box=None,
|
45 |
+
multimask_output=False,
|
46 |
+
hq_token_only=True,
|
47 |
+
)
|
48 |
+
|
49 |
+
rgb_array = np.zeros((mask.shape[1], mask.shape[2], 3), dtype=np.uint8)
|
50 |
+
rgb_array[mask[0]] = 255
|
51 |
+
result = Image.fromarray(rgb_array)
|
52 |
+
|
53 |
+
return result
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
demo = gr.Interface(fn=generate_image, inputs=[
|
58 |
+
"text",
|
59 |
+
gr.Image(image_mode='RGB', type="numpy")
|
60 |
+
],
|
61 |
+
outputs=[
|
62 |
+
gr.Image(type="numpy", image_mode='RGB')
|
63 |
+
])
|
64 |
+
demo.launch(debug=True)
|
65 |
+
logger.debug('demo.launch()')
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
segment-anything-hq
|
2 |
+
python-decouple==3.8
|
3 |
+
torch
|
4 |
+
torchaudio
|
5 |
+
torchsde
|
6 |
+
torchvision
|
7 |
+
loguru==0.7.2
|
sam_hq_vit_h.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7ac14a085326d9fa6199c8c698c4f0e7280afdbb974d2c4660ec60877b45e35
|
3 |
+
size 2570940653
|