Spaces:
Running
Running
File size: 7,989 Bytes
185a8fd 23c6543 3d84723 185a8fd 23c6543 f998c2d 03593d2 23c6543 185a8fd 03593d2 5a97268 03593d2 f998c2d 03593d2 f998c2d 03593d2 9997a25 03593d2 9997a25 f998c2d 03593d2 f998c2d 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 9997a25 03593d2 185a8fd 03593d2 9f29f2c 03593d2 5a97268 03593d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
# from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
# from accelerate import infer_auto_device_map as iadm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/deepseek-math-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
def evaluate_response(problem):
# problem=b'what is angle x if angle y is 60 degree and angle z in 60 degree of a traingle'
problem=problem+'\nPlease reason step by step, and put your final answer within \\boxed{}.'
messages = [
{"role": "user", "content": problem}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
# result_output, code_output = process_output(raw_output)
return result
# def respond(
# evaluate_response,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
# evaluate_response,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
demo = gr.Interface(
fn=evaluate_response,
inputs=[gr.Textbox(label="Question")],
outputs=gr.Textbox(label="Answer"),
title="Question and Answer Interface",
description="Enter a question."
)
if __name__ == "__main__":
demo.launch()
# import gradio as gr
# # from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
# # from accelerate import infer_auto_device_map as iadm
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
# from transformers import BitsAndBytesConfig
# from tqdm import tqdm
# import os
# USE_PAST_KEY = True
# import gc
# torch.backends.cuda.enable_mem_efficient_sdp(False)
# from transformers import (
# AutoModelForCausalLM,
# AutoTokenizer,
# AutoConfig,
# StoppingCriteria,
# set_seed
# )
# n_repetitions = 1
# TOTAL_TOKENS = 2048
# MODEL_PATH = "Pra-tham/quant_deepseekmath"
# #"/kaggle/input/gemma/transformers/7b-it/1"
# # DEEP = True
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
# import transformers
# tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL_PATH,
# device_map="cpu",
# torch_dtype="auto",
# trust_remote_code=True,
# )
# pipeline = transformers.pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# torch_dtype='auto',
# device_map='cpu',
# )
# from transformers import StoppingCriteriaList
# class StoppingCriteriaSub(StoppingCriteria):
# def __init__(self, stops = [], encounters=1):
# super().__init__()
# # self.stops = [stop.to("cuda") for stop in stops]
# self.stops = stops
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
# for stop in self.stops:
# last_token = input_ids[0][-len(stop):]
# if torch.all(torch.eq(stop,last_token)):
# return True
# return False
# stop_words = ["```output", "```python", "```\nOutput" , ")\n```" , "``````output"] #,
# stop_words_ids = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for stop_word in stop_words]
# stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
# code = """Below is a math problem you are to solve (positive numerical answer):
# \"{}\"
# To accomplish this, first determine a sympy-based approach for solving the problem by listing each step to take and what functions need to be called in each step. Be clear so even an idiot can follow your instructions, and remember, your final answer should be positive integer, not an algebraic expression!
# Write the entire script covering all the steps (use comments and document it well) and print the result. After solving the problem, output the final numerical answer within \\boxed{}.
# Approach:"""
# cot = """Below is a math problem you are to solve (positive numerical answer!):
# \"{}\"
# Analyze this problem and think step by step to come to a solution with programs. After solving the problem, output the final numerical answer within \\boxed{}.\n\n"""
# promplt_options = [code,cot]
# import re
# from collections import defaultdict
# from collections import Counter
# from numpy.random import choice
# import numpy as np
# tool_instruction = '\n\nPlease integrate natural language reasoning with programs to solve the above problem, and put your final numerical answer within \\boxed{}.\nNote that the intermediary calculations may be real numbers, but the final numercal answer would always be an integer.'
# #tool_instruction = " The answer should be given as a non-negative modulo 1000."
# #tool_instruction += '\nPlease integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}.'
# demo = gr.Interface(
# fn=predict,
# inputs=[gr.Textbox(label="Question")],
# outputs=gr.Textbox(label="Answer"),
# title="Question and Answer Interface",
# description="Enter a question."
# )
# import subprocess
# def reboot_system():
# try:
# # Execute the reboot command
# subprocess.run(['sudo', 'reboot'], check=True)
# except subprocess.CalledProcessError as e:
# print(f"Error occurred while trying to reboot the system: {e}")
# if __name__ == "__main__":
# if os.path.exists("temp.txt"):
# os.remove("temp.txt")
# reboot_system()
# demo.launch() |