File size: 7,989 Bytes
185a8fd
23c6543
3d84723
185a8fd
 
 
23c6543
 
 
 
 
 
f998c2d
03593d2
 
 
 
 
23c6543
 
185a8fd
 
03593d2
 
 
 
 
 
 
 
 
 
 
 
5a97268
03593d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f998c2d
03593d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f998c2d
03593d2
 
 
 
 
 
 
9997a25
03593d2
 
 
9997a25
f998c2d
03593d2
 
f998c2d
03593d2
 
 
 
 
 
9997a25
03593d2
 
 
 
 
9997a25
 
03593d2
 
 
9997a25
03593d2
 
 
 
 
 
 
9997a25
03593d2
 
9997a25
03593d2
 
 
 
 
9997a25
03593d2
 
9997a25
 
 
03593d2
9997a25
03593d2
 
 
 
 
9997a25
03593d2
 
 
 
 
 
 
 
 
9997a25
03593d2
 
 
 
 
9997a25
03593d2
 
 
 
 
 
185a8fd
 
03593d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f29f2c
03593d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a97268
03593d2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
# from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
# from accelerate import infer_auto_device_map as iadm

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-math-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id




def evaluate_response(problem):
#     problem=b'what is angle x if angle y is 60 degree and angle z in 60 degree of a traingle'
    problem=problem+'\nPlease reason step by step, and put your final answer within \\boxed{}.'
    messages = [
        {"role": "user", "content": problem}
    ]
    input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
    outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

    result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
#     result_output, code_output = process_output(raw_output)
    return result
    
# def respond(
#     evaluate_response,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
#     evaluate_response,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

demo = gr.Interface(
        fn=evaluate_response,
        inputs=[gr.Textbox(label="Question")],
        outputs=gr.Textbox(label="Answer"),
        title="Question and Answer Interface",
        description="Enter a question."
    )

  
if __name__ == "__main__":
    demo.launch()


# import gradio as gr
# # from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
# # from accelerate import infer_auto_device_map as iadm

# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
# from transformers import BitsAndBytesConfig
# from tqdm import tqdm
# import os 


# USE_PAST_KEY = True
# import gc
# torch.backends.cuda.enable_mem_efficient_sdp(False)

# from transformers import (
#     AutoModelForCausalLM, 
#     AutoTokenizer, 
#     AutoConfig,
#     StoppingCriteria,
#     set_seed
# )

# n_repetitions = 1 
# TOTAL_TOKENS = 2048 

# MODEL_PATH = "Pra-tham/quant_deepseekmath"
#     #"/kaggle/input/gemma/transformers/7b-it/1"
    
# # DEEP = True
# import torch

# from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
# import transformers



# tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)

# model = AutoModelForCausalLM.from_pretrained(
#             MODEL_PATH,
#             device_map="cpu",
#             torch_dtype="auto",
#             trust_remote_code=True, 

#         )
# pipeline = transformers.pipeline(
#     "text-generation",
#     model=model,
#     tokenizer=tokenizer,
#     torch_dtype='auto',
#     device_map='cpu',
# )
# from transformers import StoppingCriteriaList

# class StoppingCriteriaSub(StoppingCriteria):
#         def __init__(self, stops = [], encounters=1):
#             super().__init__()
#             # self.stops = [stop.to("cuda") for stop in stops]
#             self.stops = stops

#         def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
#             for stop in self.stops:
#                 last_token = input_ids[0][-len(stop):]
#                 if torch.all(torch.eq(stop,last_token)):
#                     return True
#             return False


# stop_words = ["```output", "```python", "```\nOutput" , ")\n```" , "``````output"] #,  
# stop_words_ids = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for stop_word in stop_words]
# stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

# code = """Below is a math problem you are to solve (positive numerical answer):
# \"{}\"
# To accomplish this, first determine a sympy-based approach for solving the problem by listing each step to take and what functions need to be called in each step. Be clear so even an idiot can follow your instructions, and remember, your final answer should be positive integer, not an algebraic expression!
# Write the entire script covering all the steps (use comments and document it well) and print the result. After solving the problem, output the final numerical answer within \\boxed{}.

# Approach:"""


# cot = """Below is a math problem you are to solve (positive numerical answer!):
# \"{}\"
# Analyze this problem and think step by step to come to a solution with programs. After solving the problem, output the final numerical answer within \\boxed{}.\n\n"""

# promplt_options = [code,cot]

# import re
# from collections import defaultdict
# from collections import Counter

# from numpy.random import choice
# import numpy as np

# tool_instruction = '\n\nPlease integrate natural language reasoning with programs to solve the above problem, and put your final numerical answer within \\boxed{}.\nNote that the intermediary calculations may be real numbers, but the final numercal answer would always be an integer.'


# #tool_instruction = " The answer should be given as a non-negative modulo 1000."
# #tool_instruction += '\nPlease integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}.'

# demo = gr.Interface(
#         fn=predict,
#         inputs=[gr.Textbox(label="Question")],
#         outputs=gr.Textbox(label="Answer"),
#         title="Question and Answer Interface",
#         description="Enter a question."
#     )

# import subprocess

# def reboot_system():
#     try:
#         # Execute the reboot command
#         subprocess.run(['sudo', 'reboot'], check=True)
#     except subprocess.CalledProcessError as e:
#         print(f"Error occurred while trying to reboot the system: {e}")
  
# if __name__ == "__main__":
#     if os.path.exists("temp.txt"):
#         os.remove("temp.txt")
#         reboot_system()
#     demo.launch()