Spaces:
Sleeping
Sleeping
File size: 5,570 Bytes
e8c0a63 6a8ba5e e8c0a63 6a8ba5e e8c0a63 6a8ba5e e8c0a63 6a8ba5e e8c0a63 6a8ba5e e8c0a63 6a8ba5e ef78f90 e8c0a63 6a8ba5e e8c0a63 6a8ba5e ef78f90 e8c0a63 6a8ba5e e8c0a63 6a8ba5e e8c0a63 ef78f90 6a8ba5e ef78f90 6a8ba5e e8c0a63 6a8ba5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
# import ctranslate2
# from transformers import AutoTokenizer
# from huggingface_hub import snapshot_download
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot
import base64
from io import BytesIO
import re
import os
# Define the model and tokenizer loading
# model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
# tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
# model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
# generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 4
test=True
# Function to generate predictions using the model
def get_prediction(question):
if test==True:
text="Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n"
return text
# input_text = model_prompt + question
# input_tokens = tokenizer.tokenize(input_text)
# results = generator.generate_batch(
# [input_tokens],
# max_length=512,
# sampling_temperature=0.7,
# sampling_topk=40,
# )
# output_tokens = results[0].sequences[0]
# predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
# return predicted_answer
# Function to parse the prediction to extract the answer and steps
def parse_prediction(prediction):
lines = prediction.strip().split('\n')
answer = None
steps = []
# for line in lines:
# # Check for "Answer:" or "answer:"
# match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
# if match:
# answer = match.group(1).strip()
# else:
# answer=lines[-1].strip()
# if answer is None:
# # If no "Answer:" found, assume last line is the answer
answer = lines[-1].strip()
steps = lines
steps_text = '\n'.join(steps).strip()
return answer, steps_text
# Function to perform majority voting and get steps
def majority_vote_with_steps(question, num_iterations=10):
all_predictions = []
all_answers = []
steps_list = []
for _ in range(num_iterations):
prediction = get_prediction(question)
answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True)
print(answer,success)
if success:
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(prediction)
else:
answer, steps = parse_prediction(prediction)
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(steps)
majority_voted_ans = get_majority_vote(all_answers)
if success:
expression = majority_voted_ans
if type_check(expression) == "Polynomial":
plotfile = draw_polynomial_plot(expression)
else:
plotfile = "polynomial_plot.png"
# Find the steps corresponding to the majority voted answer
for i, ans in enumerate(all_answers):
if ans == majority_voted_ans:
steps_solution = steps_list[i]
answer = parse_prediction(steps_solution)
break
else:
answer = majority_voted_ans
steps_solution = "No steps found"
return answer, steps_solution, plotfile
# Function to handle chat-like interaction and merge plot into chat history
def chat_interface(history, question):
final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations)
# Convert the plot image to base64 for embedding in chat (if plot exists)
if plotfile:
history.append(("what is the sum of polynomial 2x+3 and 3x?", f"Answer: \n{steps_solution}"))
with open(plotfile, "rb") as image_file:
image_bytes = image_file.read()
base64_image = base64.b64encode(image_bytes).decode("utf-8")
image_data = f'<img src="data:image/png;base64,{base64_image}" width="300"/>'
history.append(("", image_data))
else:
history.append(("MathBot", f"Answer: \n{steps_solution}"))
return history
custom_css = """
#math_question label {
font-size: 20px; /* Increase label font size */
font-weight: bold; /* Optional: make the label bold */
}
#math_question textarea {
font-size: 20px; /* Increase font size */
}
"""
# Gradio app setup using Blocks
with gr.Blocks(css=custom_css) as interface:
chatbot = gr.Chatbot(label="Chat with MathBot", elem_id="chat_history",height="70vh")
math_question = gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question")
math_question.submit(chat_interface, inputs=[chatbot, math_question], outputs=[chatbot])
interface.launch() |