Spaces:
Running
Running
File size: 7,012 Bytes
b1480b1 f9026c5 35deaeb 48bf4bb b1480b1 48bf4bb b1480b1 bacf272 b1480b1 48bf4bb b1480b1 48bf4bb 35deaeb 48bf4bb b1480b1 48bf4bb b1480b1 35deaeb bacf272 e8c0a63 35deaeb e8c0a63 f9026c5 48bf4bb f9026c5 48bf4bb 35deaeb 48bf4bb 35deaeb 48bf4bb e8c0a63 b1480b1 e8c0a63 48bf4bb b1480b1 48bf4bb 35deaeb 48bf4bb b1480b1 48bf4bb b1480b1 48bf4bb b1480b1 35deaeb 42bb7ad b1480b1 48bf4bb b1480b1 9997a25 03593d2 48bf4bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import get_majority_vote,type_check,postprocess_completion
import re
import os
# Define the model and tokenizer loading
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 4
# Function to generate predictions using the model
def get_prediction(question):
input_text = model_prompt + question
input_tokens = tokenizer.tokenize(input_text)
results = generator.generate_batch(
[input_tokens],
max_length=512,
sampling_temperature=0.7,
sampling_topk=40,
)
output_tokens = results[0].sequences[0]
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
return predicted_answer
# Function to parse the prediction to extract the answer and steps
def parse_prediction(prediction):
lines = prediction.strip().split('\n')
answer = None
steps = []
for line in lines:
# Check for "Answer:" or "answer:"
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
if match:
answer = match.group(1).strip()
else:
steps.append(line)
if answer is None:
# If no "Answer:" found, assume last line is the answer
answer = lines[-1].strip()
steps = lines
steps_text = '\n'.join(steps).strip()
return answer, steps_text
# Function to perform majority voting and get steps
def majority_vote_with_steps(question, num_iterations=10):
all_predictions = []
all_answers = []
steps_list = []
for _ in range(num_iterations):
prediction = get_prediction(question)
answer,sucess= postprocess_completion(prediction, return_status=True, last_code_block=True)
if sucess:
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(prediction)
else:
answer, steps = parse_prediction(prediction)
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(steps)
majority_voted_ans = get_majority_vote(all_answers)
if success:
print(type_check(majority_voted_ans))
if type_check(expression) == "Polynomial":
plotfile = draw_polynomial_plot(expression)
else:
if os.path.exists("thankyou.png"):
plotfile = "thankyou.png"
else:
plotfile = None
# Get the majority voted answer
# Find the steps corresponding to the majority voted answer
for i, ans in enumerate(all_answers):
if ans == majority_voted_ans:
steps_solution = steps_list[i]
answer=parse_prediction(steps_solution)
break
else:
answer=majority_voted_ans
steps_solution = "No steps found"
return answer, steps_solution,plotfile
def gradio_interface(question, correct_answer):
final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations)
return question, final_answer, steps_solution, correct_answer,plotfile
# Custom CSS for enhanced design (unchanged)
custom_css = """
body {
background-color: #fafafa;
font-family: 'Open Sans', sans-serif;
}
.gradio-container {
background-color: #ffffff;
border: 3px solid #007acc;
border-radius: 15px;
padding: 20px;
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
max-width: 800px;
margin: 50px auto;
}
h1 {
font-family: 'Poppins', sans-serif;
color: #007acc;
font-weight: bold;
font-size: 32px;
text-align: center;
margin-bottom: 20px;
}
p {
font-family: 'Roboto', sans-serif;
font-size: 18px;
color: #333;
text-align: center;
margin-bottom: 15px;
}
input, textarea {
font-family: 'Montserrat', sans-serif;
font-size: 16px;
padding: 10px;
border: 2px solid #007acc;
border-radius: 10px;
background-color: #f1f8ff;
margin-bottom: 15px;
}
#math_question, #correct_answer {
font-size: 20px;
font-family: 'Poppins', sans-serif;
font-weight: 500px;
color: #007acc;
margin-bottom: 5px;
display: inline-block;
}
textarea {
min-height: 150px;
}
.gr-button-primary {
background-color: #007acc !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-primary:hover {
background-color: #005f99 !important;
}
.gr-button-secondary {
background-color: #f44336 !important;
color: white !important;
border-radius: 10px !important;
font-size: 18px !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-family: 'Montserrat', sans-serif !important;
transition: background-color 0.3s ease !important;
}
.gr-button-secondary:hover {
background-color: #c62828 !important;
}
.gr-output {
background-color: #e0f7fa;
border: 2px solid #007acc;
border-radius: 10px;
padding: 15px;
font-size: 16px;
font-family: 'Roboto', sans-serif;
font-weight: bold;
color: #00796b;
}
"""
# Define the directory path
flagging_dir = "./flagged_data"
# Create the directory if it doesn't exist
if not os.path.exists(flagging_dir):
os.makedirs(flagging_dir)
# Gradio app setup with flagging
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"),
],
outputs=[
gr.Textbox(label="Question", interactive=False), # Non-editable
gr.Textbox(label="Answer", interactive=False), # Non-editable
gr.Textbox(label="Solution", interactive=True), # Editable textbox for correct solution
gr.Image(label="Polynomial Plot")
],
title="🔢 Math Question Solver",
description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.",
css=custom_css, # Apply custom CSS
flagging_dir=flagging_dir, # Directory to save flagged data
allow_flagging="auto" # Allow users to auto flag data
)
if __name__ == "__main__":
interface.launch() |