File size: 5,521 Bytes
b1480b1
 
 
 
400b701
6a8ba5e
 
35deaeb
48bf4bb
 
b1480b1
48bf4bb
b1480b1
 
 
bacf272
de9c78f
b1480b1
 
 
879248b
386c173
 
 
 
b1480b1
48bf4bb
 
 
 
 
 
b1480b1
 
 
 
48bf4bb
 
 
 
 
b984a91
 
 
 
 
 
 
 
 
 
 
48bf4bb
 
 
 
 
b1480b1
48bf4bb
 
6e297d6
48bf4bb
b1480b1
 
b984a91
 
 
 
35deaeb
 
bacf272
35deaeb
 
 
 
 
e8c0a63
b984a91
 
 
 
6e297d6
e8c0a63
6e297d6
48bf4bb
 
 
 
 
b984a91
48bf4bb
 
b984a91
48bf4bb
 
6e297d6
b1480b1
b984a91
 
 
 
 
 
de9c78f
b984a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9997a25
b984a91
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from codeexecutor import get_majority_vote,type_check,postprocess_completion,draw_polynomial_plot
import base64
from io import BytesIO

import re
import os
# Define the model and tokenizer loading
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 4
test=False

# Function to generate predictions using the model
def get_prediction(question):
    if test==True:
        text="Solve the following mathematical problem: what is  sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n"  

        return text
    input_text = model_prompt + question
    input_tokens = tokenizer.tokenize(input_text)
    results = generator.generate_batch(
        [input_tokens],
        max_length=512,
        sampling_temperature=0.7,
        sampling_topk=40,
    )
    output_tokens = results[0].sequences[0]
    predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
    return predicted_answer

# Function to parse the prediction to extract the answer and steps
def parse_prediction(prediction):
    lines = prediction.strip().split('\n')
    answer = None
    steps = []
    # for line in lines:
    #     # Check for "Answer:" or "answer:"
    #     match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
    #     if match:
    #         answer = match.group(1).strip()
    #     else:
    #         answer=lines[-1].strip()
    # if answer is None:
    #     # If no "Answer:" found, assume last line is the answer
    answer = lines[-1].strip()
    steps = lines
    steps_text = '\n'.join(steps).strip()
    return answer, steps_text

# Function to perform majority voting and get steps
def majority_vote_with_steps(question, num_iterations=10):
    all_predictions = []
    all_answers = []
    steps_list = []
    plot_file=None

    for _ in range(num_iterations):
        prediction = get_prediction(question)
        answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True)
        print(answer,success)

        if success:
            all_predictions.append(prediction)
            all_answers.append(answer)
            steps_list.append(prediction)
        else:
            answer, steps = parse_prediction(prediction)
            all_predictions.append(prediction)
            all_answers.append(answer)
            steps_list.append(steps)
    majority_voted_ans = get_majority_vote(all_answers)
    if success:
        
        expression = majority_voted_ans
        if type_check(expression) == "Polynomial":
            plot_file = draw_polynomial_plot(expression)
    else:
        plot_file = "polynomial_plot.png"

    # Find the steps corresponding to the majority voted answer
    for i, ans in enumerate(all_answers):
        if ans == majority_voted_ans:
            steps_solution = steps_list[i]
            answer = parse_prediction(steps_solution)
            break
    else:
        answer = majority_voted_ans
        steps_solution = "No steps found"

    return answer, steps_solution, plot_file

# Function to handle chat-like interaction and merge plot into chat history
def chat_interface(history, question):
    final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations)
    
    # Convert the plot image to base64 for embedding in chat (if plot exists)
    if plotfile:
        history.append((question, f"Answer: \n{steps_solution}"))
        
        with open(plotfile, "rb") as image_file:
            image_bytes = image_file.read()
            base64_image = base64.b64encode(image_bytes).decode("utf-8")
            image_data = f'<img src="data:image/png;base64,{base64_image}" width="300"/>'
            history.append(("", image_data)) 
    else:
        history.append(("MathBot", f"Answer: \n{steps_solution}"))
    
    return history 

custom_css = """
#math_question label {
    font-size: 20px;  /* Increase label font size */
    font-weight: bold; /* Optional: make the label bold */
}

#math_question textarea {
    font-size: 20px;  /* Increase font size */
}
"""
# Gradio app setup using Blocks
with gr.Blocks(css=custom_css) as interface:
    chatbot = gr.Chatbot(label="Chat with MathBot", elem_id="chat_history",height="70vh")
    math_question = gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question")
    
    math_question.submit(chat_interface, inputs=[chatbot, math_question], outputs=[chatbot])

interface.launch()