Spaces:
Sleeping
Sleeping
File size: 11,229 Bytes
de55b15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import re
import math
import random
from collections import defaultdict
def naive_parse(answer):
out = []
start = False
end = False
for l in reversed(list(answer)):
if l in '0123456789' and not end:
start = True
out.append(l)
else:
if start:
end = True
out = reversed(out)
return ''.join(out)
import re
import sys
import subprocess
def return_last_print(output, n):
lines = output.strip().split('\n')
if lines:
return lines[n]
else:
return ""
def process_code(code, return_shell_output=False):
def repl(match):
if "real" not in match.group():
return "{}{}".format(match.group()[:-1], ', real=True)')
else:
return "{}{}".format(match.group()[:-1], ')')
code = re.sub(r"symbols\([^)]+\)", repl, code)
if return_shell_output:
code = code.replace('\n', '\n ')
# Add a try...except block
code = "\ntry:\n from sympy import *\n{}\nexcept Exception as e:\n print(e)\n print('FAIL')\n".format(code)
if not return_shell_output:
print(code)
with open('code.py', 'w') as fout:
fout.write(code)
batcmd = 'timeout 7 ' + sys.executable + ' code.py'
try:
shell_output = subprocess.check_output(batcmd, shell=True).decode('utf8')
return_value = return_last_print(shell_output, -1)
print(shell_output)
if return_shell_output:
if return_value=='FAIL':
CODE_STATUS = False
return_value = return_last_print(shell_output, -2)
if "not defined" in return_value:
return_value+='\nTry checking the formatting and imports'
else:
CODE_STATUS = True
return return_value, CODE_STATUS
code_output = round(float(eval(return_value))) % 1000
except Exception as e:
print(e,'shell_output')
code_output = -1
if return_shell_output:
if code_output==-1:
CODE_STATUS = False
else:
CODE_STATUS = True
return code_output, CODE_STATUS
return code_output
def process_text_output(output):
result = output
try:
result_output = re.findall(r'\\boxed\{(\d+)\}', result)
print('BOXED', result_output)
if not len(result_output):
result_output = naive_parse(result)
else:
result_output = result_output[-1]
print('BOXED FINAL', result_output)
if not len(result_output):
result_output = -1
else:
result_output = round(float(eval(result_output))) % 1000
except Exception as e:
print(e)
print('ERROR PARSING TEXT')
result_output = -1
return result_output
from collections import defaultdict
from collections import Counter
def predict(problem):
temperature = 0.9
top_p = 3.0
temperature_coding = 0.9
top_p_coding = 3.0
total_results = {}
total_answers = {}
best_stats = {}
total_outputs = {}
question_type_counts = {}
starting_counts = (2,3)
i = 0
global n_repetitions,TOTAL_TOKENS,model,tokenizer,USE_PAST_KEY,NOTEBOOK_START_TIME,promplt_options,code,cot
for jj in tqdm(range(n_repetitions)):
best, best_count = best_stats.get(i,(-1,-1))
if best_count>np.sqrt(jj):
print("SKIPPING CAUSE ALREADY FOUND BEST")
continue
outputs = total_outputs.get(i,[])
text_answers, code_answers = question_type_counts.get(i,starting_counts)
results = total_results.get(i,[])
answers = total_answers.get(i,[])
for _ in range(5):
torch.cuda.empty_cache()
gc.collect()
time.sleep(0.2)
try:
ALREADY_GEN = 0
code_error = None
code_error_count = 0
code_output = -1
#initail_message = problem + tool_instruction
counts = np.array([text_answers,code_answers])
draw = choice(promplt_options, 1,
p=counts/counts.sum())
initail_message = draw[0].format(problem,"{}")
prompt = f"User: {initail_message}"
current_printed = len(prompt)
print(f"{jj}_{prompt}\n")
model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_len = len(model_inputs['input_ids'][0])
generation_output = model.generate(**model_inputs,
max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
return_dict_in_generate=USE_PAST_KEY,
do_sample = True,
temperature = temperature,
top_p = top_p,
num_return_sequences=1, stopping_criteria = stopping_criteria)
if USE_PAST_KEY:
output_ids = generation_output.sequences[0]
else:
output_ids = generation_output[0]
decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
print(f"{decoded_output[current_printed:]}\n")
current_printed += len(decoded_output[current_printed:])
cummulative_code = ""
stop_word_cond = False
for stop_word in stop_words:
stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
while (stop_word_cond) and (ALREADY_GEN<(TOTAL_TOKENS)):
if (decoded_output[-len("```python"):]=="```python"):
temperature_inner=temperature_coding
top_p_inner = top_p_coding
prompt = decoded_output
else:
temperature_inner=temperature
top_p_inner = top_p
try:
if (decoded_output[-len("``````output"):]=="``````output"):
code_text = decoded_output.split('```python')[-1].split("``````")[0]
else:
code_text = decoded_output.split('```python')[-1].split("```")[0]
cummulative_code+=code_text
code_output, CODE_STATUS = process_code(cummulative_code, return_shell_output=True)
print('CODE RESULTS', code_output)
if code_error==code_output:
code_error_count+=1
else:
code_error=code_output
code_error_count = 0
if not CODE_STATUS:
cummulative_code = cummulative_code[:-len(code_text)]
if code_error_count>=1:
print("REPEATED ERRORS")
break
except Exception as e:
print(e)
print('ERROR PARSING CODE')
code_output = -1
if code_output!=-1:
if (decoded_output[-len(")\n```"):]==")\n```"):
prompt = decoded_output+'```output\n'+str(code_output)+'\n```\n'
else:
prompt = decoded_output+'\n'+str(code_output)+'\n```\n'
else:
prompt = decoded_output
cummulative_code=""
model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
ALREADY_GEN = len(model_inputs['input_ids'][0])-input_len
if USE_PAST_KEY:
old_values = generation_output.past_key_values
else:
old_values = None
generation_output = model.generate(**model_inputs,
max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
return_dict_in_generate=USE_PAST_KEY,
past_key_values=old_values,
do_sample = True,
temperature = temperature_inner,
top_p = top_p_inner,
num_return_sequences=1, stopping_criteria = stopping_criteria)
if USE_PAST_KEY:
output_ids = generation_output.sequences[0]
else:
output_ids = generation_output[0]
decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
print(f"\nINTERMEDIATE OUT :\n{decoded_output[current_printed:]}\n")
current_printed+=len(decoded_output[current_printed:])
stop_word_cond = False
for stop_word in stop_words:
stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
if USE_PAST_KEY:
output_ids = generation_output.sequences[0]
else:
output_ids = generation_output[0]
raw_output = tokenizer.decode(output_ids[input_len:], skip_special_tokens=True)
#print(f"\n\nOutput :\n{raw_output}\n")
result_output = process_text_output(raw_output)
try:
code_output = round(float(eval(code_output))) % 1000
except Exception as e:
print(e,'final_eval')
code_output = -1
except Exception as e:
print(e,"5")
result_output, code_output = -1, -1
if code_output!=-1:
outputs.append(code_output)
code_answers+=1
if result_output!=-1:
outputs.append(result_output)
text_answers+=1
if len(outputs) > 0:
occurances = Counter(outputs).most_common()
print(occurances)
if occurances[0][1] > best_count:
print("GOOD ANSWER UPDATED!")
best = occurances[0][0]
best_count = occurances[0][1]
if occurances[0][1] > 5:
print("ANSWER FOUND!")
break
results.append(result_output)
answers.append(code_output)
best_stats[i] = (best, best_count)
question_type_counts[i] = (text_answers, code_answers)
total_outputs[i] = outputs
total_results[i] = results
total_answers[i] = answers
print("code_answers",code_answers-starting_counts[1],"text_answers",text_answers-starting_counts[0])
return best_stats[0][0]
|