import gradio as gr import ctranslate2 from transformers import AutoTokenizer from huggingface_hub import snapshot_download from codeexecutor import get_majority_vote,type_check,postprocess_completion import re import os # Define the model and tokenizer loading model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: " tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") iterations = 4 # Function to generate predictions using the model def get_prediction(question): input_text = model_prompt + question input_tokens = tokenizer.tokenize(input_text) results = generator.generate_batch( [input_tokens], max_length=512, sampling_temperature=0.7, sampling_topk=40, ) output_tokens = results[0].sequences[0] predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) return predicted_answer # Function to parse the prediction to extract the answer and steps def parse_prediction(prediction): lines = prediction.strip().split('\n') answer = None steps = [] for line in lines: # Check for "Answer:" or "answer:" match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line) if match: answer = match.group(1).strip() else: steps.append(line) if answer is None: # If no "Answer:" found, assume last line is the answer answer = lines[-1].strip() steps = lines steps_text = '\n'.join(steps).strip() return answer, steps_text # Function to perform majority voting and get steps def majority_vote_with_steps(question, num_iterations=10): all_predictions = [] all_answers = [] steps_list = [] for _ in range(num_iterations): prediction = get_prediction(question) answer,sucess= postprocess_completion(prediction, return_status=True, last_code_block=True) if sucess: all_predictions.append(prediction) all_answers.append(answer) steps_list.append(prediction) else: answer, steps = parse_prediction(prediction) all_predictions.append(prediction) all_answers.append(answer) steps_list.append(steps) majority_voted_ans = get_majority_vote(all_answers) if sucess: print(type_check(majority_voted_ans)) if type_check(majority_voted_ans) == "Polynomial": plotfile = draw_polynomial_plot(majority_voted_ans) else: if os.path.exists("polynomial_plot.png"): plotfile = "polynomial_plot.png" else: plotfile = None # Get the majority voted answer # Find the steps corresponding to the majority voted answer for i, ans in enumerate(all_answers): if ans == majority_voted_ans: steps_solution = steps_list[i] answer=parse_prediction(steps_solution) break else: answer=majority_voted_ans steps_solution = "No steps found" return answer, steps_solution,plotfile def gradio_interface(question, correct_answer): final_answer, steps_solution,plotfile = majority_vote_with_steps(question, iterations) return question, final_answer, steps_solution, correct_answer,plotfile # Custom CSS for enhanced design (unchanged) custom_css = """ body { background-color: #fafafa; font-family: 'Open Sans', sans-serif; } .gradio-container { background-color: #ffffff; border: 3px solid #007acc; border-radius: 15px; padding: 20px; box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15); max-width: 800px; margin: 50px auto; } h1 { font-family: 'Poppins', sans-serif; color: #007acc; font-weight: bold; font-size: 32px; text-align: center; margin-bottom: 20px; } p { font-family: 'Roboto', sans-serif; font-size: 18px; color: #333; text-align: center; margin-bottom: 15px; } input, textarea { font-family: 'Montserrat', sans-serif; font-size: 16px; padding: 10px; border: 2px solid #007acc; border-radius: 10px; background-color: #f1f8ff; margin-bottom: 15px; } #math_question, #correct_answer { font-size: 20px; font-family: 'Poppins', sans-serif; font-weight: 500px; color: #007acc; margin-bottom: 5px; display: inline-block; } textarea { min-height: 150px; } .gr-button-primary { background-color: #007acc !important; color: white !important; border-radius: 10px !important; font-size: 18px !important; font-weight: bold !important; padding: 10px 20px !important; font-family: 'Montserrat', sans-serif !important; transition: background-color 0.3s ease !important; } .gr-button-primary:hover { background-color: #005f99 !important; } .gr-button-secondary { background-color: #f44336 !important; color: white !important; border-radius: 10px !important; font-size: 18px !important; font-weight: bold !important; padding: 10px 20px !important; font-family: 'Montserrat', sans-serif !important; transition: background-color 0.3s ease !important; } .gr-button-secondary:hover { background-color: #c62828 !important; } .gr-output { background-color: #e0f7fa; border: 2px solid #007acc; border-radius: 10px; padding: 15px; font-size: 16px; font-family: 'Roboto', sans-serif; font-weight: bold; color: #00796b; } """ # Define the directory path flagging_dir = "./flagged_data" # Create the directory if it doesn't exist if not os.path.exists(flagging_dir): os.makedirs(flagging_dir) # Gradio app setup with flagging interface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"), ], outputs=[ gr.Textbox(label="Question", interactive=False), # Non-editable gr.Textbox(label="Answer", interactive=False), # Non-editable gr.Textbox(label="Solution", interactive=True), # Editable textbox for correct solution gr.Image(label="Polynomial Plot") ], title="🔢 Math Question Solver", description="Enter a math question to get the model's majority-voted answer and steps to solve the problem.", css=custom_css, # Apply custom CSS flagging_dir=flagging_dir, # Directory to save flagged data allow_flagging="auto" # Allow users to auto flag data ) if __name__ == "__main__": interface.launch()